
MISP-Dashboard
Real-time overview of threat intelligence from MISP instances

Team CIRCL

info@circl.lu

September 19, 2018



MISP ZeroMQ

2 of 14



MISP ZeroMQ

MISP includes a flexible publish-subscribe model to allow real-time
integration of the MISP activities:

• Event publication

• Attribute creation or removal

• Sighting

• User login

→ Operates at global level in MISP

3 of 14



MISP ZeroMQ

MISP ZeroMQ functionality can be used for various model of
integration or to extend MISP functionalities:

• Real-time search of indicators into a SIEM1

• Dashboard activities

• Logging mechanisms

• Continuous indexing

• Custom software or scripting

1Security Information & Event Management
4 of 14



MISP-Dashboard: An introduction

5 of 14



MISP-Dashboard - Realtime activities and threat
intelligence

6 of 14



MISP-Dashboard - Features

• Subscribe to multiple ZMQ MISP instances

• Provides historical geolocalised information

• Present an experimental Gamification of the platform

• Shows when and how MISP is used

• Provides real time information showing current threats and activity

7 of 14



MISP-Dashboard: Architecture and development

8 of 14



Setting up the dashboard

1. Be sure to have a running redis server: e.g.
◦ redis-server -p 6250

2. Update your configuration in config.cfg

3. Activate your virtualenv:
◦ . ./DASHENV/bin/activate

4. Listen to the MISP feed by starting the zmq subscriber:
◦ ./zmq subscriber.py

5. Start the dispatcher to process received messages:
◦ ./zmq dispatcher.py

6. Start the Flask server:
◦ ./server.py

7. Access the interface at http://localhost:8001/

9 of 14

http://localhost:8001/


MISP-Dashboard architecture

10 of 14



Writing your handler

1 # Register your handler

2 dico_action = {

3 "misp_json": handler_dispatcher ,

4 "misp_json_event": handler_event ,

5 "misp_json_self": handler_keepalive ,

6 "misp_json_attribute": handler_attribute ,

7 "misp_json_object": handler_object ,

8 "misp_json_sighting": YOUR_CUSTOM_SIGHTINGS_HANDLER ,

9 "misp_json_organisation": handler_log ,

10 "misp_json_user": handler_user ,

11 "misp_json_conversation": handler_conversation ,

12 "misp_json_object_reference": handler_log ,

13 }

14

11 of 14



1 # Implement your handler

2

3 # e.g. user handler

4 def handler_user(zmq_name , jsondata):

5 # json action performed by the user

6 action = jsondata[’action ’]

7 # user json data

8 json_user = jsondata[’User’]

9 # organisation json data

10 json_org = jsondata[’Organisation ’]

11 # organisation name

12 org = json_org[’name’]

13 # only consider user login

14 if action == ’login’:

15 timestamp = time.time()

16 # users_helper is a class to interact with the DB

17 users_helper.add_user_login(timestamp , org)

18

12 of 14



Future development

Optimizing contribution scoring and model to encourage
sharing and contributions enrichment

Increasing geolocation coverage

Global filtering capabilities

- Geolocation: Showing wanted attribute or only on specific region
- Trendings: Showing only specified taxonomies

Tighter integration with MISP

- Present in MISP by default
- Authenticated / ACL enabled version

13 of 14



Conclusion

MISP-Dashboard can provides realtime information to support
security teams, CSIRTs or SOC showing current threats and activity
by providing:

• Historical geolocalised information

• Geospatial information from specific regions

• The most active events, categories, tags, attributes, ...

It also propose a prototype of gamification of the platform providing
incentive to share and contribute to the community

14 of 14


	MISP ZeroMQ
	MISP-Dashboard: An introduction
	MISP-Dashboard: Architecture and development

