
1 MISP Training Slide Decks

MISP1 is a threat intelligence platform for gathering, sharing, storing and cor-
relating Indicators of Compromise of targeted attacks, threat intelligence, fi-
nancial fraud information, vulnerability information or even counter-terrorism
information.

This document includes the slides which are the support materials used for
MISP trainings. The slides are licensed under CC-BY-SA license which allows
you to freely use, remixes and share-alike the slides while still mentioning the
contributors under the same conditions.

2 Contributors

• Steve Clement https://github.com/SteveClement

• Alexandre Dulaunoy https://github.com/adulau

• Andras Iklody https://github.com/iglocska

• Sami Mokaddem https://github.com/mokaddem

• Raphaël Vinot https://github.com/rafiot

• Gerard Wagener https://github.com/haegardev

3 Acknowledgment

The MISP project is co-financed and resource supported by CIRCL Computer
Incident Response Center Luxembourg2 and co-financed by a CEF (Connecting
Europe Facility) funding under CEF-TC-2016-3 - Cyber Security as Improving
MISP as building blocks for next-generation information sharing.

Co-financed by the Connecting Europe

Facility of the European Union

1https://www.misp-project.org/
2https://www.circl.lu/

1

https://github.com/SteveClement
https://github.com/adulau
https://github.com/iglocska
https://github.com/mokaddem
https://github.com/rafiot
https://github.com/haegardev
https://www.misp-project.org/
https://www.circl.lu/

An Introduction to Cybersecurity Information Sharing
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Agenda

• (10:00 - 11:30) Introduction to Information Sharing with MISP

• (11:30 - 11:40) Coffee break

• (11:40 - 13:00) User perspective - diving into MISP functionalities
and integration

• (13:00 - 14:00) Lunch Break

• (14:00 - 15:00) Administrating your MISP instance

• (15:00 - 15:45) Building your information sharing communities -
CSIRT and financial sectors

• (15:45 - 16:45) Modules and extending MISP (taxonomies, objects
and galaxies)

• (16:45 - 17:15) Future - Sharing Ideas

2 of 22

MISP and starting from a practical use-case

• During a malware analysis workgroup in 2012, we discovered that
we worked on the analysis of the same malware.

• We wanted to share information in an easy and automated way to
avoid duplication of work.

• Christophe Vandeplas (then working at the CERT for the Belgian
MoD) showed us his work on a platform that later became MISP.

• A first version of the MISP Platform was used by the MALWG and
the increasing feedback of users helped us to build an improved
platform.

• MISP is now a community-driven development.

3 of 22

Development based on practical user feedback

• There are many different types of users of an information sharing
platform like MISP:
◦ Malware reversers willing to share indicators of analysis with

respective colleagues.
◦ Security analysts searching, validating and using indicators in

operational security.
◦ Intelligence analysts gathering information about specific adversary

groups.
◦ Law-enforcement relying on indicators to support or bootstrap their

DFIR cases.
◦ Risk analysis teams willing to know about the new threats,

likelyhood and occurences.
◦ Fraud analysts willing to share financial indicators to detect financial

frauds.

4 of 22

MISP model of governance

5 of 22

Many objectives from different user-groups

• Sharing indicators for a detection matter.
◦ ’Do I have infected systems in my infrastructure or the ones I operate?’

• Sharing indicators to block.
◦ ’I use these attributes to block, sinkhole or divert traffic.’

• Sharing indicators to perform intelligence.
◦ ’Gathering information about campaigns and attacks. Are they

related? Who is targeting me? Who are the adversaries?’

• → These objectives can be conflicting (e.g. False-positives have
different impacts)

6 of 22

Sharing Difficulties

• Sharing difficulties are not really technical issues but often it’s a
matter of social interactions (e.g. trust).

• Legal restriction1

◦ ”Our legal framework doesn’t allow us to share information.”
◦ ”Risk of information-leak is too high and it’s too risky for our

organization or partners.”

• Practical restriction
◦ ”We don’t have information to share.”
◦ ”We don’t have time to process or contribute indicators.”
◦ ”Our model of classification doesn’t fit your model.”
◦ ”Tools for sharing information are tied to a specific format, we use a

different one.”

1https://www.misp-project.org/compliance/
7 of 22

https://www.misp-project.org/compliance/

MISP Project Overview

• The core projecta (PHP/Python3)
supports the backend, API & UI.

• Modules (Python3) expand MISP
functionalities.

• Taxonomies (JSON) to add categories &
global tagging.

• Warning-lists (JSON) help analysts to
detect potential false-positives.

• Galaxy (JSON) to add threat-actors,
tools or ”intelligence”.

• Objects (JSON) to allow for templated
composition of security related atomic
points of information.

ahttp://github.com/MISP/

8 of 22

http://github.com/MISP/

MISP features

• MISP2 is a threat information sharing free & open source software.

• MISP has a host of functionalities that assist users in creating,
collaborating & sharing threat information - e.g. flexible sharing
groups, automatic correlation, free-text import helper, event
distribution & proposals.

• Many export formats which support IDSes / IPSes (e.g. Suricata,
Bro, Snort), SIEMs (eg CEF), Host scanners (e.g. OpenIOC,
STIX, CSV, yara), analysis tools (e.g. Maltego), DNS policies (e.g.
RPZ).

• A rich set of MISP modules3 to add expansion, import and export
functionalities.

2https://github.com/MISP/MISP
3https://www.github.com/MISP/misp-modules

9 of 22

https://github.com/MISP/MISP
https://www.github.com/MISP/misp-modules

Communities using MISP

• Communities are groups of users sharing within a set of common
objectives/values.

• CIRCL operates multiple MISP instances with a significant user
base (more than 950 organizations with more than 2400 users).

• Trusted groups running MISP communities in island mode (air
gapped system) or partially connected mode.

• Financial sector (banks, ISACs, payment processing
organizations) use MISP as a sharing mechanism.

• Military and international organizations (NATO, military
CSIRTs, n/g CERTs,...).

• Security vendors running their own communities (e.g. Fidelis) or
interfacing with MISP communities (e.g. OTX).

10 of 22

MISP core distributed sharing functionality

• MISPs’ core functionality is sharing where everyone can be a
consumer and/or a contributor/producer.”

• Quick benefit without the obligation to contribute.

• Low barrier access to get acquainted to the system.

11 of 22

Events, Objects and Attributes in MISP

• MISP events are encapsulations for contextually linked information

• MISP attributes4 initially started with a standard set of ”cyber
security” indicators.

• MISP attributes are purely based on usage (what people and
organizations use daily).

• Evolution of MISP attributes is based on practical usage & users
(e.g. the addition of financial indicators in 2.4).

• MISP objects are attribute compositions describing points of data
using many facets, constructed along the lines of community and
user defined templates.

• Galaxies granularly contextualise, classify & categorise data based
on threat actors, preventive measures, tools used by adversaries.
4attributes can be anything that helps describe the intent of the event package

from indicators, vulnerabilities or any relevant information
12 of 22

Terminology about Indicators

• Indicators5

◦ Indicators contain a pattern that can be used to detect suspicious or
malicious cyber activity.

• Attributes in MISP can be network indicators (e.g. IP address),
system indicators (e.g. a string in memory) or even bank account
details.
◦ A type (e.g. MD5, url) is how an attribute is described.

◦ An attribute is always in a category (e.g. Payload delivery) which puts
it in a context.

• A category is what describes an attribute.

◦ An IDS flag on an attribute allows to determine if an attribute can
be automatically used for detection.

5IoC (Indicator of Compromise) is a subset of indicators
13 of 22

Helping Contributors in MISP

• Contributors can use the UI, API or using the freetext import to
add events and attributes.
◦ Modules existing in Viper (a binary framework for malware reverser)

to populate and use MISP from the vty or via your IDA.

• Contribution can be direct by creating an event but users can
propose attributes updates to the event owner.

• Users should not be forced to use a single interface to
contribute.

14 of 22

Example: Freetext import in MISP

15 of 22

Supporting Classification

• Tagging is a simple way to attach a classification to an event or an
attribute.

• Classification must be globally used to be efficient.
• MISP includes a flexible tagging scheme where users can select

from more than 42 existing taxonomies or create their own
taxonomy.

16 of 22

Supporting Sharing in MISP

• Delegate events publication to another organization (introduced in
MISP 2.4.18).
◦ The other organization can take over the ownership of an event and

provide pseudo-anonymity to initial organization.

• Sharing groups allow custom sharing (introduced in MISP 2.4) per
event or even at attribute level.
◦ Sharing communities can be used locally or even cross MISP instances.
◦ Sharing groups can be done at event level or attributes level (e.g.

financial indicators shared to a financial sharing groups and cyber
security indicators to CSIRT community).

17 of 22

Sightings support

• Sightings allow users to notify the
community about the activities related
to an indicator.

• In recent MISP versions, the sighting
system supports negative sigthings (FP)
and expiration sightings.

• Sightings can be performed via the API,
and the UI, even including the import of
STIX sighting documents.

• Many use-cases for scoring indicators
based on users sighting.

18 of 22

Improving Information Sharing in MISP

• False-positives are a recurring challenge in information sharing.

• In MISP 2.4.39, we introduced the misp-warninglists6 to help
analysts in their day-to-day job.

• Predefined lists of well-known indicators which are often
false-positives like RFC1918 networks, public DNS resolver are
included by default.

6https://github.com/MISP/misp-warninglists
19 of 22

https://github.com/MISP/misp-warninglists

Improving support of sharing within and outside an
organization

• Even in a single organization, multiple use-cases of MISP can
appear (groups using it for dynamic malware analysis correlations,
dispatching notification).

• In MISP 2.4.51, we introduced the ability to have local MISP
servers connectivity to avoid changes in distribution level. This
allows to have mixed synchronization setup within and outside an
organization.

• Feed support was also introduced to support synchronization
between untrusted and trusted networks.

20 of 22

Bootstrapping MISP with indicators

• We maintain the default CIRCL OSINT feeds (TLP:WHITE
selected from our communities) in MISP to allow users to ease
their bootstrapping.

• The format of the OSINT feed is based on standard MISP JSON
output pulled from a remote TLS/HTTP server.

• Additional content providers can provide their own MISP feeds.
(https://botvrij.eu/)

• Allows users to test their MISP installations and
synchronisation with a real dataset.

• Opening contribution to other threat intel feeds but also allowing
the analysis of overlapping data7.

7A recurring challenge in information sharing
21 of 22

https://botvrij.eu/

Conclusion

• Information sharing practices come from usage and by
example (e.g. learning by imitation from the shared information).

• MISP is just a tool. What matters is your sharing practices. The
tool should be as transparent as possible to support you.

• Enable users to customize MISP to meet their community’s
use-cases.

22 of 22

MISP Workbench - Manage your very own Cyber Threat
Intelligence tool

MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Functionalities of MISP Workbench

• Merging of events (campaign, attacker, tool, victim, ...)

• Comparing campaigns composed of multiple events

• Expanding MISP in a timely manner (no Apache, MySQL & PHP)

• Extraction of PE indicators & correlation

• Reduce an investigation on a subset of events

• Very fast lookups, use the dataset in an untrusted environment

2 of 19

MISP Galaxy

• List of known keywords:
◦ Adversary groups (with synonyms)
◦ Threat actors tools (with synonyms)

• Used to automatically group related events

3 of 19

MISP galaxy - elements of threat actors

• An element list of threat actors included by default.
1 {
2 "synonyms": [

3 "PLA Unit 61486", "APT 2", "Group 36",

4 "APT -2", "MSUpdater", "4HCrew", "SULPHUR"

5],

6 "country": "CN",

7 "refs": [

8 "http://cdn0.vox -cdn.com/assets/4589853/

9 crowdstrike -intelligence -report -putter -panda.

original.pdf"

10],

11 "description": "The CrowdStrike Intelligence team has

12 been tracking this particular unit since 2012, under

13 the codename PUTTER PANDA, and has documented activity

14 dating back to 2007. The report identifies Chen Ping,

15 aka cpyy, and the primary location of Unit 61486.",

16 "group": "Putter Panda"

17 }
4 of 19

MISP galaxy - elements of threat actors tools

• An element list of tools used by various threat actors.

• The key-values can be freely combined.
1 {
2 "value": "MSUpdater"

3 },
4 {
5 "value": "Poison Ivy",

6 "description": "Poison Ivy is a RAT which was freely

7 available and first released in 2005.",

8 "refs": ["https://www.fireeye.com/content/dam/fireeye -

www/global/en/current -threats/pdfs/rpt -poison -ivy.

pdf"]

9 },
10 {
11 "value": "Elise Backdoor",

12 "synonyms": ["Elise"]

13 }

5 of 19

Groups

6 of 19

PE indicators

• Original filename

• Compilation timestamp

• Import hashes

• Number of sections

• Entry points

• Soon: API calls

• Soon: Entropy of the sections

• Soon: Fuzzy hashing on the import table

7 of 19

PE indicators

8 of 19

PE indicators - Compilation Timestamp

9 of 19

PE indicators - Compilation Timestamp

10 of 19

PE indicators - Original Filenames

11 of 19

PE indicators - Original Filenames

12 of 19

SSDeep Clustering

• Compute SSDeep hashes on big datasets

• Group samples by similarity

• Allow to pick groups with a certain level of similarities

• Especially interesting on targeted and/or unpaked samples

13 of 19

SSDeep

14 of 19

MISP Hashstore

• Allow very fast lookups against big dataset.

• Only store hashed versions of the attributes.

• Can be used on untrusted or compromised systems (comparable to
bloom filter).

• Hashstore can be used for forensic analysis (e.g. compare baseline

• Beta version available1.

1https://github.com/MISP/misp-workbench/tree/master/hashstore
15 of 19

https://github.com/MISP/misp-workbench/tree/master/hashstore

MISP Workbench

• Objective: bundle all the functionalities in one single tool

• Easily enrich MISP dataset with other fields (specially PE
indicators)

• Simple connectors with other tools and datasets

• Group events using galaxies (adversaries and tools)

• Full text indexing and lookups for other keywords

• Display the amount of unique MISP events matching a PE
attribute

• Single user lightweitht interface

• Stand-alone and offline

16 of 19

Implementation

• Full python 3

• Redis backend

• Whoosh full text indexer

• Pefile for the PE processing, radare2 will be used soon

• Flask + bootstrap web interface

17 of 19

Setup

• Export MySQL to Redis
◦ Full snapshot for workbench
◦ Partial snapshot for hashstore

• Doesn’t respect MISP ACL

• Redis database can be moved to an other system

• Run full text indexing

• Import the PE indicators

• Run ssdeep correlation

18 of 19

Q&A

• Developed in collaboration with Marion Marschalek

• https://github.com/MISP/misp-workbench

• https://github.com/MISP/misp-galaxy

• https://github.com/MISP/data-processing

• https://github.com/CIRCL/ssdc

• We welcome new functionalities and pull requests.

19 of 19

https://github.com/MISP/misp-workbench
https://github.com/MISP/misp-galaxy
https://github.com/MISP/data-processing
https://github.com/CIRCL/ssdc

What’s next?
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

What’s cooking?

MISP next features and work in progress

2 of 14

Tagging improvements

• Generating related tags (to show and propose similar tags for
similar values)

• Special local tags to tags non-owned events

• ”Tag everything project”
◦ Gives us much more granularity.
◦ Convenient way to add features without a database change.

• Tags exclusivity as expressed in Taxonomy (e.g. TLP:AMBER and
TLP:GREEN tags are exclusive to an attribute or event)

3 of 14

Unified API and modules interface

• Single search API / scope (events, objects, attributes)

• Return in any format supported by the internal converters and
export module

• Consistent filters for all output formats

• Open up export modules for bulk exports (framing system)

4 of 14

Graphing improvements

• Highly used but a currently underdeveloped feature

• Open up the correlation graph to the enrichment module
functionality

• Allow adding attributes directly from the correlation graph

• Allow tagging / attaching clusters directly from the correlation
graph

• Advanced correlation where correlations are proposed based on
fuzzy matching

• Persistent / shareable graphs (on correlation - already available in
graph event)

• Gephi export/integration (on correlation - already available in
graph event)

5 of 14

MISP objects improvements

• In application object template editor

• Object level tagging and galaxies

• Share the object designs within partners on-demand (e.g.
remotely browse shared templates of a partner and import them).

• Closer integration of the objects into the various exports

• MISP-modules upgrade for tighter object integration

6 of 14

MISP galaxy 2.0

• Currently galaxy clusters are static and based on the shared
repository / an out of bound created local repository

• 2.0 will allow the interactive creation / editing of galaxies and
clusters

• Sharing these across instances will happen purely in MISP instead
of just sharing the tags

7 of 14

MISP Darwin

• MISP events are great for more technical analysts or staff familiar
with MISP

• The goal is to consolidate the information and automatically
generate natural language reports out of these events

• Upcoming new project on GitHub

• Python code for managing the creation based on triggers and
conversion mechanisms

• Using a list of pre-defined strings from customiseable libraries

• Similar approach as warninglists, taxonomies or galaxies. Just
create your own JSON

8 of 14

MISP Hashstore

• Allow very fast lookups against big dataset.

• Only store hashed versions of the attributes.

• Can be used on untrusted or compromised systems (comparable to
bloom filter).

• Hashstore can be used for forensic analysis (e.g. compare baseline

• Beta version available1.

1https://github.com/MISP/misp-workbench/tree/master/hashstore
9 of 14

https://github.com/MISP/misp-workbench/tree/master/hashstore

MISP privacy-aware exchange

• A privacy-aware exchange module to securely and privately share
your indicators.

• The basic idea is to transform MISP attributes into something
sharable which does not leak any information.

• A first prototype is accessible2.

2https://github.com/MISP/misp-privacy-aware-exchange
10 of 14

https://github.com/MISP/misp-privacy-aware-exchange

MISP dashboard 2.0

• Tighter integration with MISP

• 2 way communication with MISP

• Authenticated / ACL enabled version

11 of 14

MISP Gamification

• Goal is to encourage users to contribute by offering recognition for
their efforts.

• Profiles with various metrics tracking contribution.

• Opt-in system since it requires a loss of anonymity.

• Gain points by
◦ Entering events
◦ Proposing changes (that have to be accepted to get credit)
◦ Reviewing events and pointing out false positives

• Based on the existing work in misp-dashboard (MISP up vote on
usefulness on information will be added).

12 of 14

Conclusion

• Information sharing practices come from usage and by
example (e.g. learning by imitation from the shared information).

• MISP is just a tool. What matters is your sharing practices. The
tool should be as transparent as possible to support you.

• Enable users to customize MISP to meet their community’s
use-cases.

• MISP is evolving into a modular tool for information sharing and
”CTI”.

• Contributions and ideas originate from the community of
users.

• Co-funding of new features or projects around MISP are welcome.

13 of 14

Q&A

• https://github.com/MISP/MISP

• https://github.com/MISP/ for misp-modules, misp-objects,
misp-taxonomies and misp-galaxy.

• Feel free to open an issue or make a pull-request on GitHub.

14 of 14

https://github.com/MISP/MISP
https://github.com/MISP/

Contributing to MISP Project
Become part of the community to design, develop and improve information

sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Code of Conduct

• The MISP project has a Contributor Covenant Code of Conduct1.

• The goal of the code of conduct is to foster an open, fun and
welcoming environment.

• Another important aspect of the MISP projects is to welcome
different areas of expertise in information sharing and analysis. The
diversity of the MISP community is important to make the
project useful for everyone.

1https://github.com/MISP/MISP/code_of_conduct.md

https://github.com/MISP/MISP/code_of_conduct.md

Reporting a bug, an issue or suggesting features

• The most common way to contribute to the MISP project is to
report a bug, issues or suggesting features.

• Each project (MISP core, misp-modules, misp-book,
misp-taxonomies, misp-galaxy, misp-object or PyMISP) has their
own issue management.

• Don’t forget that you can cross-reference issues from other
sub-projects.

• If you know an answer or could help on a specific issue, we
welcome all contributions including useful comments to reach a
resolution.

Reporting security vulnerabilities

• If you find security vulnerabilities (even minor ones) in MISP
project, send an encrypted email (info@circl.lu) with the details
and especially how to reproduce the issues. Avoid to share publicly
the vulnerability before a fix is available in MISP. PGP key
fingerprint: CA57 2205 C002 4E06 BA70 BE89 EAAD CFFC
22BD 4CD5.

• We usually fix reported and confirmed security vulnerabilities in
less than 48 hours.

• We will request a CVE number if the reporters didn’t ask for
one (don’t forget to mention how you want to be credited).

Automatic integration and testing

• The majority of the repositories within the MISP GitHub
organisation includes automatic integration with TravisCI.

• If you contribute and make a pull-request, verify if your changes
affect the result of the tests.

• Automatic integration is not perfect including Travis but it’s a
quick win to catch new bugs or major issues in contribution.

• When you do a pull-request, TravisCI is automatically called2.
◦ If this fails, no worries, review the output at Travis (it’s not always

you).

• We are working on additional automatic tests including unit testing
for the MISP core software (contributors are welcome).

2https://travis-ci.org/MISP

https://travis-ci.org/MISP

JSON validation for MISP libraries

• All JSON format (galaxy, taxonomies, objects or warning-lists)
are described in a JSON Schema3.

• The TravisCI tests are including JSON validation (via jq) and
validated with the associated JSON schema.

• How to contribute a JSON library (objects, taxonomies, galaxy or
warning-list):
◦ If you update a JSON library, don’t forget to run jq all the things.sh.

It’s fast and easy. If it fails, review your JSON.
◦ Commit your code and make a pull-request.

• Documentations (in PDF and HTML format) for the librairies are
automatically generated from the JSON via asciidoctor4.

3schema name.json
4example https:

//github.com/MISP/misp-galaxy/blob/master/tools/adoc_galaxy.py

https://github.com/MISP/misp-galaxy/blob/master/tools/adoc_galaxy.py
https://github.com/MISP/misp-galaxy/blob/master/tools/adoc_galaxy.py

Documentation

• In addition to the automatic generation of documentations from
JSON files, we maintain misp-book5 which is a generic
documentation for MISP including usage, API documentation, best
practices and specific configuration settings.

• The book is generated in HTML, PDF, epub and mobi using
GitBook6 which is a framework to write documentation in
MarkDown format.

• TravisCI is included in misp-book and the book generation is
tested at each commit.

• The MISP book is regularly published on misp-project.org and
circl.lu website.

• Contributors are welcome especially for new topics7 and also fixing
our broken english.
5https://github.com/MISP/misp-book
6https://github.com/GitbookIO
7Topics of interest are analysts best-practices,

https://github.com/MISP/misp-book
https://github.com/GitbookIO

Internet-Draft - IETF for MISP formats

• If you want to contribute to our IETF Internet-Draft for the MISP
standard, misp-rfc8 is the repository where to contribute.

• Update only the markdown file, the XML and ASCII for the
IETF I-D are automatically generated.

• If a major release or updates happen in the format, we will publish
the I-D to the IETF9.

• The process is always MISP implementation → IETF I-D updates.

8https://github.com/MISP/misp-rfc
9https://datatracker.ietf.org/doc/search/?name=misp&activedrafts=

on&rfcs=on

https://github.com/MISP/misp-rfc
https://datatracker.ietf.org/doc/search/?name=misp&activedrafts=on&rfcs=on
https://datatracker.ietf.org/doc/search/?name=misp&activedrafts=on&rfcs=on

MISP core development crash course
How I learned to stop worrying and love the PHP

Team CIRCL

MISP Training @ Prague
20180917

1 of 17

Some things to know in advance...

• MISP is based on PHP 5.6+

• Using the MVC framework CakePHP 2.x

• What we’ll look at now will be a quick glance at the structuring /
layout of the code

2 of 17

MVC frameworks in general

• separation of business logic and views, interconnected by controllers

• main advantage is clear separation of the various components

• lean controllers, fat models (kinda...)

• domain based code reuse

• No interaction between Model and Views, ever

3 of 17

Structure of MISP Core app directories

• Config: general configuration files

• Console: command line tools

• Controller: Code dealing with requests/responses, generating data
for views based on interactions with the models

• Lib: Generic reusable code / libraries

• Model: Business logic, data gathering and modification

• Plugin: Alternative location for plugin specific codes, ordered into
controller, model, view files

• View: UI views, populated by the controller

4 of 17

Controllers - scope

• Each public function in a controller is exposed as an API action

• request routing (admin routing)

• multi-use functions (POST/GET)

• request/response objects

• contains the action code, telling the application what data
fetching/modifying calls to make, preparing the resulting data for
the resulting view

• grouped into controller files based on model actions

• Accessed via UI, API, AJAX calls directly by users

• For code reuse: behaviours

• Each controller bound to a model

5 of 17

Controllers - functionalities of controllers

• pagination functionality

• logging functionality

• Controllers actions can access functionality / variables of Models

• Controllers cannot access code of other controller actions (kind
of...)

• Access to the authenticated user’s data

• beforeFilter(), afterFilter() methods

• Inherited code in AppController

6 of 17

Controllers - components

• Components = reusable code for Controllers
◦ Authentication components
◦ RestResponse component
◦ ACL component
◦ Cidr component
◦ IOCImport component (should be moved)

7 of 17

Controllers - additional functionalities

• code handling API requests

• auth/session management

• ACL management

• API management

• Security component

• important: quertString/PyMISP versions, MISP version handler

• future improvements to the export mechanisms

8 of 17

Models - scope

• Controls anything that has to do with:
◦ finding subsets of data
◦ altering existing data
◦ inherited model: AppModel
◦ reusable code for models: Behaviours
◦ regex, trim

9 of 17

Models - hooking system

• Versatile hooking system
◦ manipulate the data at certain stages of execution
◦ code can be located in 3 places: Model hook, AppModel hook,

behaviour

10 of 17

Model - hooking pipeline (add/edit)

• Hooks / model pipeline for data creation / edits
◦ beforeValidate() (lowercase all hashes)
◦ validate() (check hash format)
◦ afterValidate() (we never use it
◦ could be interesting if we ever validated without saving)
◦ beforeSave() (purge existing correlations for an attribute)
◦ afterSave() (create new correlations for an attribute / zmq)

11 of 17

Models - hooking pipeline (delete/read)

• Hooks for deletions
◦ beforeDelete() (purge correlations for an attribute)
◦ afterDelete() (zmq)

• Hooks for retrieving data
◦ beforeFind() (modify the find parameters before execution, we don’t

use it)
◦ afterFind() (json decode json fields)

12 of 17

Models - misc

• code to handle version upgrades contained in AppModel

• generic cleanup/data migration tools

• centralised redis/pubsub handlers

• (Show example of adding an attribute with trace)

13 of 17

Views - scope and structure

• templates for views

• layouts

• reusable template code: elements
◦ attribute list, rows (if reused)

• reusable code: helpers
◦ commandhelper (for discussion boards), highlighter for searches, tag

colour helper

• views per controller

14 of 17

Views - Types of views and helpers

• ajax views vs normal views

• data views vs normal views vs serialisation in the controller

• sanitisation h()

• creating forms
◦ sanitisation
◦ CSRF

15 of 17

Distribution

• algorithm for checking if a user has access to an attribute

• creator vs owner organisation

• distribution levels and inheritance (events -¿ objects -¿ attributes)

• shorthand inherit level

• sharing groups (org list, instance list)

• correlation distribution

• algorithms for safe data fetching (fetchEvents(),
fetchAttributes(),...)

16 of 17

Testing your code

• funtional testing

• impact scope
◦ view code changes: only impacts request type based views
◦ controller code changes: Should only affect given action
◦ model code changes: can have impact on entire application
◦ lib changes: can have affect on the entire application

• Don’t forget: queryACL, change querystring

17 of 17

Deep-dive into PyMISP
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Context

• MISP is a large project

• Your production environment is even more complex

• 3rd party services are even worse

• Querying MISP via CURL is doable, but get’s painful fast

• Talking to MySQL directly can be dangerous

• POST a JSON blob, receive a JSON blob. You can do it
manually(-ish)

2 of 22

Big picture

• Core goal: providing stable access to APIs, respect access control

• Simplifying handling & automation of indicators in 3rd party tools

• Hiding complexity of the JSON blobs

• Providing pre-cooked examples for commonly used operations

• Helping integration with existing infrastructure

3 of 22

Common queries: Recent changes on a timeframe

There are 4 main cases here:

• Metadata of the events that have been modified
◦ search index ⇒ timestamp (1h, 1d, 7d, ...), returns list of all the

modified events

• Full events (metadata + attributes)
◦ search ⇒ timestamp (1h, 1d, 7d, ...)

• Modified attributes
◦ search ⇒ controller = attributes and timestamp (1h, 1d, 7d, ...)

• Other use case: get last published events by using the last
parameter in the search method.

4 of 22

Common queries: Search things

There are 3 main cases here:

• Easy, but slow: full text search with search all

• Faster: use the search method and search by tag, type, enforce
the warning lists, with(-out) attachments, dates interval, ...

• Get malware samples (if available on the instance).

5 of 22

Common queries: create things

There are 3 main cases here:

• Add Event, edit its metadata

• Add attributes or objects to event

• (un)Tag event or attribute (soon object)

• Edit Attributes medatada

• Upload malware sample (and automatically expand it)

6 of 22

Administrative tasks

Assyming you have the right to do it on the instance.

• Managing users

• Managing organisations

• Managing sync servers

7 of 22

Other Capabilities

• Upload/download samples

• Proposals: add, edit, accept, discard

• Sightings: Get, set, update

• Export statistics

• Manage feeds

• Get MISP server version, recommended PyMISP version

• And more, look at the api file

8 of 22

MISPEvent - Usecase

from pymisp import MISPEvent , EncodeUpdate

Create a new even t w i th d e f a u l t v a l u e s
e v e n t = MISPEvent ()

Load an e x i s t i n g JSON dump (o p t i o n a l)
e v e n t . l o a d f i l e (’ Path / to / e v e n t . j s o n ’)
e v e n t . i n f o = ’My c o o l e v e n t ’ # Duh .

Add an a t t r i b u t e o f type ip−d s t
e v e n t . a d d a t t r i b u t e (’ ip−d s t ’ , ’ 8 . 8 . 8 . 8 ’)

Mark an a t t r i b u t e as d e l e t e d (From 2 . 4 . 6 0)
e v e n t . d e l e t e a t t r i b u t e (’<A t t r i b u t e UUID> ’)

Dump as j s o n
e v e n t a s j s o n d u m p = j s o n . dumps (event , c l s=EncodeUpdate)

9 of 22

Basics

• Python 3.5+ is recommended

• PyMISP is always inline with current version (pip3 install pymisp)

• Dev version: pip3 install
git+https://github.com/MISP/PyMISP.git

• Get your auth key from:
https://misppriv.circl.lu/events/automation

◦ Not available: you don’t have ”Auth key access” role. Contact your
instance admin.

• Source available here: git clone
https://github.com/MISP/PyMISP.git

10 of 22

https://misppriv.circl.lu/events/automation
https://github.com/MISP/PyMISP.git

Examples

• PyMISP needs to be installed (duh)

• Usage:
◦ Create examples/keys.py with the following content

m i s p u r l = ” h t t p s : / / u r l−to−your−misp ”
m i s p k e y = ”<API KEY>”
m i s p v e r i f y c e r t = True

• Proxy support:
p r o x i e s = {

’ h t t p ’ : ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 1 2 3 ’ ,
’ h t t p s ’ : ’ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 1 2 3 ’ ,

}
PyMISP (m i s p u r l , misp key , m i s p v e r i f y c e r t , p r o x i e s=p r o x i e s)

11 of 22

Examples

• Lots of ideas on how to use the API

• You may also want to look at the tests directory

• All the examples use argparse. Help usage is available: script.py
-h
◦ add file object.py: Attach a file (PE/ELF/Mach-O) object to an

event
◦ upload.py: Upload a malware sample (use advanced expansion is

available on the server)
◦ last.py: Returns all the most recent events (on a timeframe)
◦ add named attribute.py: Add attribute to an event
◦ sighting.py: Update sightings on an attribute
◦ stats.py: Returns the stats of a MISP instance
◦ {add,edit,create} user.py : Add, Edit, Create a user on MISP

12 of 22

Usage

• Basic example

from pymisp import PyMISP
a p i = PyMISP (u r l , a p i k e y , v e r i f y c e r t=True , debug=F a l s e , p r o x i e s=None)
r e s p o n s e = a p i .< f u n c t i o n >
i f r e s p o n s e [’ e r r o r ’] :

<someth ing went wrong>
e l s e :

<do someth ing wi th the output>

13 of 22

Concept behind AbstractMISP

• JSON blobs are python dictionaries

• ... Accessing content can be a pain

• AbstractMISP inherits collections.MutableMapping, they are
all dictionaries!

• ... Has helpers to load, dump, and edit JSON blobs

• Important: All the public attributes (not starting with a) defined
in a class are dumped to JSON

• Tags: Events and Attributes have tags, soon Objects. Tag
handling is defined in this class.

• edited: When pushing a full MISPEvent, only the objects without
a timestamp, or with a newer timestamp will be updated. This
method recursively finds updated events, and removes the
timestamp key from the object.

14 of 22

MISPEvent, MISPAttribute, MISPObject,
MISPSighting...

• Pythonic representation of MISP elements

• Easy manipulation
◦ Load an existing event
◦ Update te metadata, add attributes, objects, tags, mark an attribute

as deleted, ...
◦ Set relations between objects
◦ Load and add attachments or malware samples as pseudo files

• Dump to JSON

15 of 22

MISPEvent - Main entrypoints

• load file(event path)

• load(json event)

• add attribute(type, value, **kwargs)

• add object(obj=None, **kwargs)

• add attribute tag(tag, attribute identifier)

• get attribute tag(attribute identifier)

• add tag(tag=None, **kwargs)

• objects[], attributes[], tags[]

• edited, all other paramaters of the MISPEvent element (info, date,
...)

• to json()

16 of 22

MISPObject - Main entrypoints

• add attribute(object relation, **value)

• add reference(referenced uuid, relationship type, comment=None,
**kwargs)

• has attributes by relation(list of relations)

• get attributes by relation(object relation)

• attributes[], relations[]

• edited, all other paramaters of the MISPObject element (name,
comment, ...)

• to json()

• Can be validated against their template

• Can have default parameters applied to all attributes (i.e.
distribution, category, ...)

17 of 22

MISPAttribute - Main entrypoints

• add tag(tag=None, **kwargs)

• delete()

• malware binary (if relevant)

• tags[]

• edited, all other paramaters of the MISPObject element (value,
comment, ...)

• to json()

18 of 22

PyMISP - Tools

• Libraries requiring specfic 3rd party dependencies

• Callable via PyMISP for specific usecases

• Curently implemented:
◦ OpenIOC to MISP Event
◦ MISP to Neo4J

19 of 22

PyMISP - Default objects generators

• File - PE/ELF/MachO - Sections

• VirusTotal

• Generic object generator

20 of 22

PyMISP - Logging / Debugging

• debug=True passed to the constructor enable debug to stdout

• Configurable using the standard logging module

• Show everything send to the server and received by the client

import pymisp
import l o g g i n g

l o g g e r = l o g g i n g . g e t L o g g e r (’ pymisp ’)
l o g g e r . s e t L e v e l (l o g g i n g .DEBUG) # enab l e debug to s t dou t

l o g g i n g . b a s i c C o n f i g (l e v e l=l o g g i n g .DEBUG, # Enable debug to f i l e
f i l e n a m e=” debug . l o g ” ,
f i l e m o d e= ’w ’ ,
format=pymisp .FORMAT)

21 of 22

Q&A

• https://github.com/MISP/PyMISP

• https://github.com/MISP/

• https://pymisp.readthedocs.io/

• We welcome new functionalities and pull requests.

22 of 22

https://github.com/MISP/PyMISP
https://github.com/MISP/
https://pymisp.readthedocs.io/

MISP feeds - A simple and secure approach to generate,
select and collect intelligence

Providing ready-to-use threat intelligence in MISP standard format

Team CIRCL
TLP:WHITE

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

MISP Feed - Basics

MISP Feeds provide a way to

• Exchange information via any transports (e.g. HTTP, TLS, USB
keys)

• Preview events along with their attributes, objects

• Select and import events

• Correlate attributes using caching

MISP Feeds have the following advantages

• Feeds work without the need of MISP synchronisation (reducing attack
surface and complexity to a static directory with the events)

• Feeds can be produced without a MISP instance (e.g. security
devices, honeypot sensors)

2 of 11

Feed - Overview

• By default, MISP is bundled with ∼50 default feeds (MISP feeds, CSV or
freetext feeds) which are not enabled by default and described in a simple
JSON file1.

• The feeds include CIRCL OSINT feed but also feeds like abuse.ch, Tor
exit nodes or many more 2.

1https:

//github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json
2http://www.misp-project.org/feeds/

3 of 11

https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json
https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json
http://www.misp-project.org/feeds/

Feed - Operations

• Cache feed attributes for correlation (not imported but visible in MISP)

• Disable feed

• Explore remote events

• Fetch all events (imported in MISP as event)

• Edit the feed configuration (e.g. authentication, URL,...)

• Remove feed

• Download feed metadata (to share feed details)

4 of 11

Feed - Creation using PyMISP feed generator

feed generator fetches events (matching some filtering) from a MISP
instance and construct the manifest (defined in MISP core format) needed
to export data.

Particularly,

• Used to generate the CIRCL OSINT feed

• Export events as json based on tags, organisation, events, ...

• Automatically update the dumps and the metadata file

• Comparable to a lighweight TAXII interface

5 of 11

Feed generator - configuration file

1 url = ’your/misp/url’

2 key = ’YourAPIKey ’

3 ssl = True

4 outputdir = ’output_directory ’

5

6 filters = {

7 ’tag’:’tlp:white|feed -export |! privint ’,

8 ’org’:’CIRCL ’

9 }

10 # the above would generate a feed for all events created by

CIRCL , tagged tlp:white and/or feed -export but exclude

anything tagged privint

11

12 valid_attribute_distribution_levels = [’0’, ’1’, ’2’, ’3’, ’4’

, ’5’]

13 # 0: Your Organisation Only

14 # 4: Sharing Group

15 # 5: Inherit Event

16

6 of 11

Real-time Feed generator - Purpose

The PyMISP feed generator is great but may be inadequate or ineficient:

• Batch import of attributes/objects

• Data producer doesn’t have a MISP instance at hand and only wants to
produce a directly consumable feed:

Honeypot MISP

ip-src
payload-delivery
url
malware
...

7 of 11

Real-time Feed generator - Usage

• generator.py exposes a class allowing to generate a MISP feed in
real-time

• Each items can be appended on daily generated events

Example:

1 # Init generator

2 generator = FeedGenerator ()

3

4 # Adding an attribute to the daily event

5 attr_type = "ip-src"

6 attr_value = "8.8.8.8"

7 additional_data = {}

8 generator.add_attribute_to_event(attr_type ,

9 attr_value ,

10 ** additional_data)

8 of 11

Real-time Feed generator - Usage (2)

1 # Adding a MISP object (cowrie) to the daily event

2 obj_name = "cowrie"

3 obj_data = {

4 "session": "session_id",

5 "username": "admin",

6 "password": "admin",

7 "protocol": "telnet"

8 }

9 generator.add_object_to_event(obj_name , ** obj_data)

9 of 11

Adding custom feed to MISP

• Enabled

• Lookup visible

• Name

• Provider

• Source Format

• Url

• Source Format

• Headers

• Distribution

• Default Tag

• Filter rules

10 of 11

Q&A

• https://github.com/MISP/PyMISP

• https://github.com/MISP/

• We welcome new functionalities and pull requests.

11 of 11

https://github.com/MISP/PyMISP
https://github.com/MISP/

MISP workshop
Introduction into Information Sharing using MISP for CSIRTs

Team CIRCL
TLP:WHITE

MISP Training @ Prague
20180917

Plan for this session

• Explanation of the CSIRT use case for information sharing and
what CIRCL does

• Building an information sharing community and best practices

2 / 34

Communities operated by CIRCL

• As a CSIRT, CIRCL operates a wide range of communities

• We use it as an internal tool to cover various day-to-day activities

• Whilst being the main driving force behind the development, we’re
also one of the largest consumers

• Different communities have different needs and restrictions

3 / 34

Communities operated by CIRCL

• Private sector community
◦ Our largest sharing community
◦ Over 900 organisations
◦ 2000 users
◦ Functions as a central hub for a lot of sharing communities
◦ Private organisations, Researchers, Various SoCs, some CSIRTs, etc

• CSIRT community
◦ Tighter community
◦ National CSIRTs, connections to international organisations, etc

4 / 34

Communities operated by CIRCL

• Financial sector community
◦ Banks, payment processors, etc.
◦ Sharing of mule accounts and non-cyber threat infomartion

• X-ISAC
◦ Bridging the gap between the various sectorial and georgraphical

ISACs
◦ New, but ambitious initiative
◦ Goal is to bootstrap the cross-sectorial sharing along with building

the infrastructure to enable sharing when needed

5 / 34

Communities operated by CIRCL

• Coming up - the ATT&CK EU community
◦ Work on attacker modelling
◦ With the assistance of Mitre themselves
◦ Unique opportunity to standardise on TTPs
◦ Looking for organisations that want to get involved!

6 / 34

Communities supported by CIRCL

• FIRST.org’s MISP community

• Telecom and Mobile operators’ community

• Various ad-hoc communities for exercises for example
◦ Most recently for example for the ENISA exercise a few weeks ago

7 / 34

Sharing Scenarios in MISP

• Sharing can happen for many different reasons. Let’s see what
we believe are the typical CSIRT scenarios

• We can generally split these activities into 4 main groups when
we’re talking about traditional CSIRT tasks:
◦ Core services
◦ Proactive services
◦ Advanced services
◦ Sharing communities managed by CSIRTs for various tasks

8 / 34

CSIRT core services

• Incident response
◦ Internal storage of incident response data
◦ Sharing of indicators derived from incident response
◦ Correlating data derived and using the built in analysis tools
◦ Enrichment services
◦ Collaboration with affected parties via MISP during IR
◦ Co-ordination and collaboration
◦ Takedown requests

• Alerting of information leaks (integration with AIL1)

1https://github.com/CIRCL/AIL-framework
9 / 34

https://github.com/CIRCL/AIL-framework

CSIRT proactive services

• Contextualising both internal and external data

• Collection and dissimination of data from various sources
(including OSINT)

• Storing, correlating and sharing own manual research (reversing,
behavioural analysis)

• Aggregating automated collection (sandboxing, honeypots,
spamtraps, sensors)
◦ MISP allows for the creation of internal MISP ”clouds”
◦ Store large specialised datasets (for example honeypot data)
◦ MISP has interactions with a large set of such tools (Cuckoo,

Mail2MISP, etc)

• Situational awareness tools to monitor trends and adversary
TTPs within my sector/geographical region (MISP-dashboard,
built in statistics)

10 / 34

CSIRT proactive services - MISP dashboard

11 / 34

CSIRT proactive services - MISP dashboard

12 / 34

CSIRT advanced services

• Supporting forensic analysts

• Collaboration with law enforcement

• Vulnerability information sharing
◦ Notifications to the constituency about relevant vulnerabilities
◦ Co-ordinating with vendors for notifications (*)
◦ Internal / closed community sharing of pentest results
◦ We’re planning on starting a series of hackathons to find

13 / 34

CSIRTs’ management of sharing communities for
constituent actions:

• Reporting non-identifying information about incidents (such as
outlined in NISD)

• Seeking and engaging in collaboration with CSIRT or other
parties during an incident

• Pre-sharing information to request for help / additional
information from the community

• Pseudo-anonymised sharing through 3rd parties to avoid
attribution of a potential target

• Building processes for other types of sharing to get the
community engaged and acquainted with the methodologies of
sharing (mule account information, border control, etc)

14 / 34

A quick note on compliance...

• Collaboration with Deloitte as part of a CEF project for creating
compliance documents
◦ Information sharing and cooperation enabled by GDPR
◦ How MISP enables stakeholders identified by the NISD to perform

key activities
◦ AIL and MISP

• For more information: https://github.com/CIRCL/compliance

15 / 34

Bringing different sharing communities together

• We generally all end up sharing with peers that face similar
threats

• Division is either sectorial or geographical

• So why even bother with trying to bridge these communities?

16 / 34

Advantages of cross sectorial sharing

• Reuse of TTPs across sectors
• Being hit by something that another sector has faced before
• Hybrid threats - how seemingly unrelated things may be

interesting to correlate
• Prepare other communities for the capability and culture of

sharing for when the need arises for them to reach out to CSIRT
• Generally our field is ahead of several other sectors when it comes

to information sharing, might as well spread the love

17 / 34

Getting started with building your own sharing
community

• Starting a sharing community is both easy and difficult at the
same time

• Many moving parts and most importantly, you’ll be dealing with a
diverse group of people

• Understanding and working with your constituents to help them
face their challenges is key

18 / 34

Getting started with building your own sharing
community

• When you are starting out - you are in a unique position to drive
the community and set best practices...

19 / 34

Running a sharing community using MISP - How to
get going?

• Different models for constituents
◦ Connecting to a MISP instance hosted by a CSIRT
◦ Hosting their own instance and connecting to CSIRT’s MISP
◦ Becoming member of a sectorial MISP community that is connected

to CSIRT’s community

• Planning ahead for future growth
◦ Estimating requirements
◦ Deciding early on common vocabularies
◦ Offering services through MISP

20 / 34

Rely on our instincts to immitate over expecting
adherence to rules

• Lead by example - the power of immitation

• Encourage improving by doing instead of blocking sharing with
unrealistic quality controls
◦ What should the information look like?
◦ How should it be contextualise
◦ What do you consider as useful information?
◦ What tools did you use to get your conclusions?

• Side effect is that you will end up raising the capabilities of your
constituents

21 / 34

What counts as valuable data?

• Sharing comes in many shapes and sizes
◦ Sharing results / reports is the classical example
◦ Sharing enhancements to existing data
◦ Validating data / flagging false positives
◦ Asking for support from the community

• Embrace all of them. Even the ones that don’t do either, you’ll
never know when they change their minds...

22 / 34

How to deal with organisations that only ”leech”?

• From our own communities, only about 30% of the organisations
actively share data

• We have come across some communities with sharing requirements

• In our experience, this sets you up for failure because:
◦ Organisations will lose protection who would possibily benefit the

most from it
◦ Organisations that want to stay above the thresholds will start sharing

junk / fake data
◦ You lose organisations that might turn into valuable contributors in

the future

23 / 34

So how does one convert the passive organisations
into actively sharing ones?

• Rely on organic growth

• Help them increase their capabilities

• As mentioned before, lead by example

• Rely on the inherent value to one’s self when sharing information
(validation, enrichments, correlations)

• Give credit where credit is due, never steal the accolades of your
community (that is incredibly demotivating)

24 / 34

Dispelling the myths around blockers when it comes to
information sharing

• Sharing difficulties are not really technical issues but often it’s a
matter of social interactions (e.g. trust).
◦ You can play a role here: organise regular workshops, conferences,

have face to face meetings

• Legal restrictions
◦ ”Our legal framework doesn’t allow us to share information.”
◦ ”Risk of information leak is too high and it’s too risky for our

organization or partners.”

• Practical restrictions
◦ ”We don’t have information to share.”
◦ ”We don’t have time to process or contribute indicators.”
◦ ”Our model of classification doesn’t fit your model.”
◦ ”Tools for sharing information are tied to a specific format, we use a

different one.”
25 / 34

Contextualising the information

• Sharing technical information is a great start

• However, to truly create valueable information for your community,
always consider the context:
◦ Your IDS might not care why it should alert on a rule
◦ But your analysts will be interested in the threat landscape and the

”big picture”

• Classify data to make sure your partners understand why it is
important for them

• Massively important once an organisation has the maturity to filter
the most critical subsets of information for their own defense

26 / 34

Choice of vocabularies

• MISP has a verify versatile system (taxonomies) for classifying and
marking data

• However, this includes different vocabularies with obvious overlaps

• MISP allows you to pick and choose vocabularies to use and
enforce in a community

• Good idea to start with this process early

• If you don’t find what you’re looking for:
◦ Create your own (JSON format, no coding skills required)
◦ If it makes sense, share it with us via a pull request for redistribution

27 / 34

Shared libraries of meta-information (Galaxies)

• The MISPProject in co-operation with partners provides a curated
list of galaxy information

• Can include information packages of different types, for example:
◦ Threat actor information
◦ Specialised information such as Ransomware, Exploit kits, etc
◦ Methodology information such as preventative actions
◦ Classification systems for methodologies used by adversaries -

ATT&CK

• Consider improving the default libraries or contributing your own
(simple JSON format)

• If there is something you cannot share, run your own galaxies and
share it out of bound with partners

• Pull requests are always welcome

28 / 34

False-positive handling

• You might often fall into the trap of discarding seemingly ”junk”
data

• Besides volume limitations (which are absolutely valid, fear of
false-positives is the most common reason why people discard
data) - Our recommendation:
◦ Be lenient when considering what to keep
◦ Be strict when you are feeding tools

• MISP allows you to filter out the relevant data on demand when
feeding protective tools

• What may seem like junk to you may be absolutely critical to other
users

29 / 34

Many objectives from different user-groups

• Sharing indicators for a detection matter.
◦ ’Do I have infected systems in my infrastructure or the ones I operate?’

• Sharing indicators to block.
◦ ’I use these attributes to block, sinkhole or divert traffic.’

• Sharing indicators to perform intelligence.
◦ ’Gathering information about campaigns and attacks. Are they

related? Who is targeting me? Who are the adversaries?’

• → These objectives can be conflicting (e.g. False-positives have
different impacts)

30 / 34

False-positive handling

• Analysts will often be interested in the modus operandi of threat
actors over long periods of time

• Even cleaned up infected hosts might become interesting again
(embedded in code, recurring reuse)

• Use the tools provided to eliminate obvious false positives instead
and limit your data-set to the most relevant sets

31 / 34

Managing sub-communities

• Often within a community smaller bubbles of information sharing
will form

• For example: Within a national private sector sharing community,
specific community for financial institutions

• Sharing groups serve this purpose mainly

• As a CSIRT running a national community, consider bootstraping
these sharing communities

• Organisations can of course self-organise, but you are the ones
with the know-how to get them started

32 / 34

Managing sub-communities

• Consider compartmentalisation - does it make sense to move a
secret squirrel club to their own sharing hub to avoid accidental
leaks?

• Use your best judgement to decide which communities should be
separated from one another

• Create sharing hubs with manual data transfer

• Some organisations will even have their data air-gapped - Feed
system

• Create guidance on what should be shared outside of their bubbles
- organisations often lack the insight / experience to decide how to
get going. Take the initiative!

33 / 34

Get in touch if you need some help to get started

• Getting started with building a new community can be daunting.
Feel free to get in touch with us if you have any questions!

• Contact: info@circl.lu

• https://www.circl.lu/

• https://github.com/MISP - https://gitter.im/MISP/MISP -
https://twitter.com/MISPProject

34 / 34

https://www.circl.lu/
https://github.com/MISP
https://gitter.im/MISP/MISP
https://twitter.com/MISPProject

MISP User Training - General usage of MISP
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

MISP - VM

• Credentials
◦ MISP admin: admin@admin.test/admin
◦ SSH: misp/Password1234

• Available at the following location (VirtualBox and VMWare):
◦ https://www.circl.lu/misp-images/latest/

2 of 22

https://www.circl.lu/misp-images/latest/

MISP - General Usage

Plan for this part of the training

• Data model

• Viewing data

• Creating data

• Co-operation

• Distribution

• Exports

3 of 22

MISP - Event (MISP’s basic building block)

4 of 22

MISP - Event (Attributes, giving meaning to events)

5 of 22

MISP - Event (Correlations on similar attributes)

6 of 22

MISP - Event (Proposals)

7 of 22

MISP - Event (Tags)

8 of 22

MISP - Event (Discussions)

9 of 22

MISP - Event (Taxonomies and proposal correlations)

10 of 22

MISP - Event (The state of the art MISP datamodel)

11 of 22

MISP - Viewing the Event Index

• Event Index
◦ Event context
◦ Tags
◦ Distribution
◦ Correlations

• Filters

12 of 22

MISP - Viewing an Event

• Event View
◦ Event context
◦ Attributes

• Category/type, IDS, Correlations

◦ Objects
◦ Galaxies
◦ Proposals
◦ Discussions

• Tools to find what you are looking for

• Correlation graphs

13 of 22

MISP - Creating and populating events in various
ways (demo)

• The main tools to populate an event
◦ Adding attributes / batch add
◦ Adding objects and how the object templates work
◦ Freetext import
◦ Import
◦ Templates
◦ Adding attachments / screenshots
◦ API

14 of 22

MISP - Various features while adding data

• What happens automatically when adding data?
◦ Automatic correlation
◦ Input modification via validation and filters (regex)
◦ Tagging / Galaxy Clusters

• Various ways to publish data
◦ Publish with/without e-mail
◦ Publishing via the API
◦ Delegation

15 of 22

MISP - Using the data

• Correlation graphs

• Downloading the data in various formats

• Cached exports

• API (explained later)

• Collaborating with users (proposals, discussions, emails)

16 of 22

MISP - Sync explained (if no admin training)

• Sync connections

• Pull/push model

• Previewing instances

• Filtering the sync

• Connection test tool

• Cherry pick mode

17 of 22

MISP - Feeds explained (if no admin training)

• Feed types (MISP, Freetext, CSV)

• Adding/editing feeds

• Previewing feeds

• Local vs Network feeds

18 of 22

MISP - Distributions explained

• Your Organisation Only

• This Community Only

• Connected Communities

• All Communities

• Sharing Group

19 of 22

MISP - Distribution and Topology

20 of 22

MISP - Exports and API

• Download an event

• Quick glance at the APIs

• Download search results

• Cached exports

21 of 22

MISP - Shorthand admin (if no admin training)

• Settings

• Troubleshooting

• Workers

• Logs

22 of 22

Viper - Using MISP from your terminal
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Viper - Main ideas

Viper is a binary analysis and management framework. Its
fundamental objective is to provide a solution to easily orga-
nize your collection of malware and exploit samples as well as
your collection of scripts you created or found over the time to
facilitate your daily research. Think of it as a Metasploit for
malware researchers: it provides a terminal interface that you
can use to store, search and analyze arbitrary files with and a
framework to easily create plugins of any sort.

2 of 13

Viper

• Solid CLI

• Plenty of modules (PE files, *office, ELF, APK, ...)

• Connection to 3rd party services (MISP, VirusTotal, cuckoo)

• Connectors to 3rd party tools (IDA, radare)

• Locale storage of your own zoo

• Django interface is available (I’ve been told)

3 of 13

Viper

4 of 13

PyMISP & Viper

• Full featured CLI for MISP

• Remote storage of your zoo

• Search / Cross check with VirusTotal

• Create / Update / Show / Publish Event

• Download / Upload Samples

• Mass export / Upload / Download

• Get Yara rules

5 of 13

MISP Module

6 of 13

Viper & VT

• Searches for hashes/ips/domains/URLs from the current MISP
event, or download the samples

• Download samples from current MISP event

• Download all samples from all the MISP events of the current
session

7 of 13

VirusTotal Module

8 of 13

Extra features

• Link to a MISP event

• Local storage of the MISP event

• On the fly cross-check of MISP atributes with 3rd party services

• Never leaving your CLI!

9 of 13

Other modules

• Fully featured CLI for Passive SSL

• Fully featured CLI for Passive DNS

• Can launch Radare2 or IDA

10 of 13

Passive SSL

11 of 13

Passive DNS

12 of 13

Q&A

• https://github.com/MISP/PyMISP

• https://github.com/MISP/

• https://github.com/viper-framework/viper

• We welcome new functionalities and pull requests.

13 of 13

https://github.com/MISP/PyMISP
https://github.com/MISP/
https://github.com/viper-framework/viper

MISP Training: MISP Deployment and Integration

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

A Common Integration

2 / 12

Recommended MISP Setup

• Provisioning your MISP infrastructure depends heavily on the
number of attributes/events (whether your dataset is below or
above 50 million attributes).

• Number of MISP instances and the overall design depends on the
following factors:
◦ Is your community private? Are you gathering MISP events from

other communities? Are you publishing events to external
(trusted/untrusted) communities.

◦ Do you plan to have automatic tools (e.g. sandbox analysis or
low-value information needing correlation or an analyst workbench)
feeding MISP?

3 / 12

Vendors and Formats

• There is a jungle of formats with some vendors having little to no
interest in keeping their users autonomous.

• Attacks and threats require a dynamic format to be efficiently
shared (e.g. from financial indicators to personal information).

• Review your current list of formats/vendors to ensure a limited
loss of information, especially when exporting from MISP to other
formats (e.g. STIX not supporting financial indicators or
taxonomies/galaxies).

4 / 12

Use case: Normalizing OSINT and Private Feeds

• Normalizing external input and feed into MISP (e.g. feed
importer).

• Comparing feeds before import (how many similarities?
false-positives?).

• Evaluating quality of information before import (warning-list
lookup at feed evaluation).

5 / 12

Connecting Devices and Tools to MISP

• One of the main goals of MISP is to feed protective or detection
tools with data
◦ IDSes / IPSes (e.g. Suricata, Bro, Snort format as included in Cisco

products)
◦ SIEMs (e.g. CEF, CSV or real-time ZMQ pub-sub or Sigma)
◦ Host scanners (e.g. OpenIOC, STIX, yara rule-set, CSV)
◦ Various analysis tools (e.g. Maltego)
◦ DNS policies (e.g. RPZ)

• Various ways of exporting this data (downloads of the selected
data, full exports, APIs)

• The idea was to leave the selection process of the subset of data to
be pushed to these up to the user using APIs.

6 / 12

SIEM and MISP Integration

• SIEMs and MISP can be integrated with different techniques
depending on the processes at your SOC or IR:
◦ Pulling events (via the API) or indicator lists at regular intervals in a

given time frame to perform lookups.
◦ Subscribing to the MISP ZMQ pub-sub channel to directly get the

published events and use these in a lookup process.
◦ Lookup expansion module in MISP towards the SIEM to have a

direct view of the attributes matched against the SIEM.

• The above options can be combined, depending on your
organisation or requirements to increase coverage and detection.

7 / 12

ZMQ integration: misp-dashboard

• A dashboard showing live data and statistics from the ZMQ
pub-sub of one or more MISP instances.

• Building low-latency software by consuming pub-sub channel
provides significant advantages over standard API use.

• Process information in real-time when it’s updated, created,
published or gathered in MISP.

• Demo!

8 / 12

New integrations: IR and threat hunting using MISP

• Close co-operation with the Hive project for IR
◦ Interact with MISP directly from the Hive
◦ Use both the MISP modules and the Cortex analysers in MISP or the

Hive directly

• Using MISP to support your threat hunting via McAfee
OpenDXL

• (https://securingtomorrow.mcafee.com/business/
optimize-operations/

expanding-automated-threat-hunting-response-open-dxl)

9 / 12

https://securingtomorrow.mcafee.com/business/optimize-operations/expanding-automated-threat-hunting-response-open-dxl
https://securingtomorrow.mcafee.com/business/optimize-operations/expanding-automated-threat-hunting-response-open-dxl
https://securingtomorrow.mcafee.com/business/optimize-operations/expanding-automated-threat-hunting-response-open-dxl

The Hive integration

10 / 12

Reporting Back from your Devices, Tools or Processes

As Sightings can be positive, negative or even based on expiration,
different use cases are possible:

• Sightings allow users to notify a MISP instance about the
activities related to an indicator.

• Activities can be from a SIEM (e.g. Splunk lookup validation or
false-positive feedback), a NIDS or honeypot devices1.

• Sighting can affect the API to limit the NIDS exports and improve
the NIDS rule-set directly.

1https://www.github.com/MISP/misp-sighting-tools
11 / 12

https://www.github.com/MISP/misp-sighting-tools

Q&A

• info@circl.lu (if you want to join the CIRCL MISP sharing
community)

• https://github.com/MISP/ -
http://www.misp-project.org/

• We welcome any contributions to the project, be it pull requests,
ideas, github issues,...

12 / 12

https://github.com/MISP/
http://www.misp-project.org/

MISP-Dashboard
Real-time overview of threat intelligence from MISP instances

Team CIRCL

info@circl.lu

September 19, 2018

MISP ZeroMQ

2 of 14

MISP ZeroMQ

MISP includes a flexible publish-subscribe model to allow real-time
integration of the MISP activities:

• Event publication

• Attribute creation or removal

• Sighting

• User login

→ Operates at global level in MISP

3 of 14

MISP ZeroMQ

MISP ZeroMQ functionality can be used for various model of
integration or to extend MISP functionalities:

• Real-time search of indicators into a SIEM1

• Dashboard activities

• Logging mechanisms

• Continuous indexing

• Custom software or scripting

1Security Information & Event Management
4 of 14

MISP-Dashboard: An introduction

5 of 14

MISP-Dashboard - Realtime activities and threat
intelligence

6 of 14

MISP-Dashboard - Features

• Subscribe to multiple ZMQ MISP instances

• Provides historical geolocalised information

• Present an experimental Gamification of the platform

• Shows when and how MISP is used

• Provides real time information showing current threats and activity

7 of 14

MISP-Dashboard: Architecture and development

8 of 14

Setting up the dashboard

1. Be sure to have a running redis server: e.g.
◦ redis-server -p 6250

2. Update your configuration in config.cfg

3. Activate your virtualenv:
◦ . ./DASHENV/bin/activate

4. Listen to the MISP feed by starting the zmq subscriber:
◦ ./zmq subscriber.py

5. Start the dispatcher to process received messages:
◦ ./zmq dispatcher.py

6. Start the Flask server:
◦ ./server.py

7. Access the interface at http://localhost:8001/

9 of 14

http://localhost:8001/

MISP-Dashboard architecture

10 of 14

Writing your handler

1 # Register your handler

2 dico_action = {

3 "misp_json": handler_dispatcher ,

4 "misp_json_event": handler_event ,

5 "misp_json_self": handler_keepalive ,

6 "misp_json_attribute": handler_attribute ,

7 "misp_json_object": handler_object ,

8 "misp_json_sighting": YOUR_CUSTOM_SIGHTINGS_HANDLER ,

9 "misp_json_organisation": handler_log ,

10 "misp_json_user": handler_user ,

11 "misp_json_conversation": handler_conversation ,

12 "misp_json_object_reference": handler_log ,

13 }

14

11 of 14

1 # Implement your handler

2

3 # e.g. user handler

4 def handler_user(zmq_name , jsondata):

5 # json action performed by the user

6 action = jsondata[’action ’]

7 # user json data

8 json_user = jsondata[’User’]

9 # organisation json data

10 json_org = jsondata[’Organisation ’]

11 # organisation name

12 org = json_org[’name’]

13 # only consider user login

14 if action == ’login’:

15 timestamp = time.time()

16 # users_helper is a class to interact with the DB

17 users_helper.add_user_login(timestamp , org)

18

12 of 14

Future development

Optimizing contribution scoring and model to encourage
sharing and contributions enrichment

Increasing geolocation coverage

Global filtering capabilities

- Geolocation: Showing wanted attribute or only on specific region
- Trendings: Showing only specified taxonomies

Tighter integration with MISP

- Present in MISP by default
- Authenticated / ACL enabled version

13 of 14

Conclusion

MISP-Dashboard can provides realtime information to support
security teams, CSIRTs or SOC showing current threats and activity
by providing:

• Historical geolocalised information

• Geospatial information from specific regions

• The most active events, categories, tags, attributes, ...

It also propose a prototype of gamification of the platform providing
incentive to share and contribute to the community

14 of 14

MISP User Training - Administration of MISP 2.4
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

MISP - VM

• VM can be downloaded at
https://www.circl.lu/misp-training/

• Credentials
◦ MISP admin: admin@admin.test/admin
◦ SSH: misp/Password1234

• 2 network interfaces
◦ NAT
◦ Host only adapter

• Start the enrichment system by typing:
◦ cd /home/misp/misp-modules/bin
◦ python3 misp-modules.py

2 of 22

https://www.circl.lu/misp-training/

MISP - Administration

• Plan for this part of the training
◦ User and Organisaton administration
◦ Sharing group creation
◦ Templates
◦ Tags and Taxonomy
◦ Whitelisting and Regexp entries
◦ Setting up the synchronisation
◦ Scheduled tasks
◦ Feeds
◦ Settings and diagnostics
◦ Logging
◦ Troubleshooting and updating

3 of 22

MISP - Creating Users

• Add new user (andras.iklody@circl.lu)

• NIDS SID, Organisation, disable user

• Fetch the PGP key

• Roles
◦ Re-using standard roles
◦ Creating a new custom role

• Send out credentials

4 of 22

MISP - Creating Organisations

• Adding a new organisation

• UUID

• Local vs External organisation

• Making an organisation self sustaining with Org Admins

• Creating a sync user

5 of 22

MISP - Sharing groups

• The concept of a sharing group

• Creating a sharing group

• Adding extending rights to an organisation

• Include all organisations of an instance

• Not specifying an instance

• Making a sharing group active

• Reviewing the sharing group

6 of 22

MISP - Templates

• Why templating?

• Create a basic template

• Text fields

• Attribute fields

• Attachment fields

• Automatic tagging

7 of 22

MISP - Tags and Taxonomies

• git submodule init && git submodule update

• Loading taxonomies

• Enabling taxonomies and associated tags

• Tag management

• Exportable tags

8 of 22

MISP - Object Templates

• git submodule init && git submodule update

• Enabling objects (and what about versioning)

9 of 22

MISP - Whitelisting, Regexp entries, Warninglists

• Block from exports - whitelisting

• Block from imports - blacklisting via regexp

• Modify on import - modification via regexp

• Maintaining the warninglists

10 of 22

MISP - Setting up the synchronisation

• Requirements - versions

• Pull/Push

• One way vs Two way synchronisation

• Exchanging sync users

• Certificates

• Filtering

• Connection test tool

• Previewing an instance

• Cherry picking and keeping the list updated

11 of 22

MISP - Scheduled tasks

• How to schedule the next execution

• Frequency, next execution

• What happens if a job fails?

12 of 22

MISP - Setting up the synchronisation

• MISP Feeds and their generation

• PyMISP

• Default free feeds

• Enabling a feed

• Previewing a feed and cherry picking

• Feed filters

• Auto tagging

13 of 22

MISP - Settings and diagnostics

• Settings
◦ Settings interface
◦ The tabs explained at a glance
◦ Issues and their severity
◦ Setting guidance and how to best use it

14 of 22

MISP - Settings and diagnostics continued

• Basic instance setup

• Additional features released as hotfixes

• Customise the look and feel of your MISP

• Default behaviour (encryption, e-mailing, default distributions)

• Maintenance mode

• Disabling the e-mail alerts for an initial sync

15 of 22

MISP - Settings and diagnostics continued

• Plugins
◦ Enrichment Modules
◦ RPZ
◦ ZeroMQ

16 of 22

MISP - Settings and diagnostics continued

• Diagnostics
◦ Updating MISP
◦ Writeable Directories
◦ PHP settings
◦ Dependency diagnostics

17 of 22

MISP - Settings and diagnostics continued

• Workers
◦ What do the background workers do?
◦ Queues
◦ Restarting workers, adding workers, removing workers
◦ Worker diagnostics (queue size, jobs page)
◦ Clearing worker queues
◦ Worker and background job debugging

18 of 22

MISP - Settings and diagnostics continued

• Seeking help
◦ Dump your settings to a file!
◦ Make sure to sanitise it
◦ Send it to us together with your issue to make our lives easier
◦ Ask Github (https://github.com/MISP/MISP)
◦ Have a chat with us on gitter (https://gitter.im/MISP/MISP)
◦ Ask the MISP mailing list
◦ If this is security related, drop us a PGP encrypted email to
mailto:info@circl.lu

19 of 22

mailto:info@circl.lu

MISP - Logging

• Audit logs in MISP

• Enable IP logging / API logging

• Search the logs, the fields explained

• External logs
◦ /var/www/MISP/app/tmp/logs/error.log
◦ /var/www/MISP/app/tmp/logs/resque-worker-error.log
◦ /var/www/MISP/app/tmp/logs/resque-scheduler-error.log
◦ /var/www/MISP/app/tmp/logs/resque-[date].log
◦ /var/www/MISP/app/tmp/logs/error.log
◦ apache access logs

20 of 22

MISP - Updating MISP

• git pull

• git submodule init && git submodule update

• reset the permissions if it goes wrong according to the INSTALL.txt

• when MISP complains about missing fields, make sure to clear the
caches
◦ in /var/www/MISP/app/tmp/cache/models remove myapp*
◦ in /var/www/MISP/app/tmp/cache/persistent remove myapp*

• No additional action required on hotfix level

• Read the migration guide for major and minor version changes

21 of 22

MISP - Administrative tools

• Upgrade scripts for minor / major versions

• Maintenance scripts

22 of 22

Information Sharing and Taxonomies
Practical Classification of Threat Indicators using MISP

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

From Tagging to Flexible Taxonomies

• Tagging is a simple way to attach a classification to an event or an
attribute.

• In the early version of MISP, tagging was local to an instance.
• Classification must be globally used to be efficient.
• After evaluating different solutions of classification, we build a new

scheme using the concept of machine tags.
2 of 17

Machine Tags

• Triple tag or machine tag was introduced in 2004 to extend
geotagging on images.

• A machine tag is just a tag expressed in way that allows systems to
parse and interpret it.

• Still have a human-readable version:

◦ admiralty-scale:Source Reliability=”Fairly reliable”

3 of 17

MISP Taxonomies

• Taxonomies are implemented in a simple JSON format.

• Anyone can create their own taxonomy or reuse an existing one.

• The taxonomies are in an independent git repository1.

• These can be freely reused and integrated in other threat intel
tools.

• Taxonomies are licensed under CC0 (public domain) except if the
taxonomy author decided to use another license.

1https://www.github.com/MISP/misp-taxonomies/
4 of 17

https://www.github.com/MISP/misp-taxonomies/

Existing Taxonomies

• NATO - Admiralty Scale

• CIRCL Taxonomy - Schemes of Classification in Incident
Response and Detection

• eCSIRT and IntelMQ incident classification

• EUCI EU classified information marking

• Information Security Marking Metadata from DNI (Director of
National Intelligence - US)

• NATO Classification Marking

• OSINT Open Source Intelligence - Classification

• TLP - Traffic Light Protocol

• Vocabulary for Event Recording and Incident Sharing - VERIS

• and many more like ENISA, Europol, or the draft FIRST SIG
Information Exchange Policy.

5 of 17

Want to write your own taxonomy? 1/2

1 {
2 ”namespace” : ” adm i r a l t y−s c a l e ” ,
3 ” d e s c r i p t i o n ” : ”The Admi ra l t y S ca l e (a l s o c a l l e d the NATO

System) i s used to rank the r e l i a b i l i t y o f a s ou r c e and
the c r e d i b i l i t y o f an i n f o rma t i o n . ” ,

4 ” v e r s i o n ” : 1 ,
5 ” p r e d i c a t e s ” : [
6 {
7 ” va l u e ” : ” source− r e l i a b i l i t y ” ,
8 ” expanded ” : ” Source R e l i a b i l i t y ”
9 } ,

10 {
11 ” va l u e ” : ” i n f o rma t i on−c r e d i b i l i t y ” ,
12 ” expanded ” : ” I n f o rma t i o n C r e d i b i l i t y ”
13 }
14] ,
15

6 of 17

Want to write your own taxonomy? 2/2

1 {
2 ” v a l u e s ” : [
3 {
4 ” p r e d i c a t e ” : ” source− r e l i a b i l i t y ” ,
5 ” e n t r y ” : [
6 {
7 ” va l u e ” : ”a” ,
8 ” expanded ” : ” Comp le te l y r e l i a b l e ”
9 } ,

10

• Publishing your taxonomy is as easy as a simple git pull request on
misp-taxonomies2.

2https://github.com/MISP/misp-taxonomies
7 of 17

https://github.com/MISP/misp-taxonomies

How are taxonomies integrated in MISP?

• MISP administrator can just import (or even cherry pick) the
namespace or predicates they want to use as tag.

• Tags can be exported to other instances.

• Tags are also accessible via the MISP REST API.

8 of 17

Filtering the distribution of events among MISP
instances

• Applying rules for distribution based on tags:

9 of 17

Other use cases using MISP taxonomies

• Tags can be used to set events or attributes for further processing
by external tools (e.g. VirusTotal auto-expansion using Viper).

• Ensuring a classification manager classies the events before
release (e.g. release of information from air-gapped/classified
networks).

• Enriching IDS export with tags to fit your NIDS deployment.

• Using IntelMQ and MISP together to process events (tags limited
per organization introduced in MISP 2.4.49).

10 of 17

Future functionalities related to MISP taxonomies

• Sighting support (thanks to NCSC-NL) is integrated in MISP
allowing to auto expire IOC based on user detection.

• Adjusting taxonomies (adding/removing tags) based on their score
or visibility via sighting.

• Simple taxonomy editors to help non-technical users to create
their taxonomies.

• Filtering mechanisms in MISP to rename or replace
taxonomies/tags at pull and push synchronisation.

• More public taxonomies to be included.

11 of 17

PyTaxonomies

• Python module to handle the taxonomies

• Offline and online mode (fetch the newest taxonomies from
GitHub)

• Simple search to make tagging easy

• Totally independant from MISP

• No external dependencies in offline mode

• Python3 only

• Can be used to create & dump a new taxonomy

12 of 17

PyTaxonomies

from pytaxonomies import Taxonomies
taxonomies = Taxonomies ()
taxonomies . v e r s i o n
=> ’20160725 ’
taxonomies . d e s c r i p t i o n
=> ’ Man i f e s t f i l e o f MISP taxonomies a v a i l a b l e . ’
l i s t (taxonomies . keys ())
=> [’ t l p ’ , ’ eu−c r i t i c a l −s e c t o r s ’ , ’ de−vs ’ , ’ o s i n t ’ , ’ c i r c l ’ , ’ v e r i s ’ ,
’ e c s i r t ’ , ’ dhs−c i i p−s e c t o r s ’ , ’ f r−c l a s s i f ’ , ’ misp ’ , ’ adm i r a l t y−s c a l e ’ , . . .]
taxonomies . ge t (’ e n i s a ’) . d e s c r i p t i o n
’The p r e s e n t t h r e a t taxonomy i s an i n i t i a l v e r s i o n tha t has been deve l oped on
the b a s i s o f a v a i l a b l e ENISA ma t e r i a l . Th i s ma t e r i a l has been used as an ENISA−i n t e r n a l
s t r u c t u r i n g a i d f o r i n f o rma t i o n c o l l e c t i o n and t h r e a t c o n s o l i d a t i o n pu rpo s e s .
I t emerged i n the t ime p e r i o d 2012−2015. ’
p r i n t (taxonomies . ge t (’ c i r c l ’))
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=” v u l n e r a b i l i t y ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”malware ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=” f a s t f l u x ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”system−compromise ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”sq l−i n j e c t i o n ”
. . . .
p r i n t (taxonomies . ge t (’ c i r c l ’) . mach ine tags expanded ())
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”Ph i s h i ng ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”Malware”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”XSS”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”Copy r i gh t i s s u e ”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”Spam”
c i r c l : i n c i d e n t−c l a s s i f i c a t i o n=”SQL I n j e c t i o n ”

13 of 17

The dilemma of false-positive

• False-positive is a common issue in threat intelligence sharing.

• It’s often a contextual issue:
◦ false-positive might be different per community of users sharing

information.
◦ organization might have their own view on false-positive.

• Based on the success of the MISP taxonomy model, we build
misp-warninglists.

14 of 17

MISP warning lists

• misp-warninglists are lists of w
¯

ell-known indicators that can be
associated to potential false positives, errors or mistakes.

• Simple JSON files

1 {
2 ”name” : ” L i s t o f known p u b l i c DNS r e s o l v e r s ” ,
3 ” v e r s i o n ” : 2 ,
4 ” d e s c r i p t i o n ” : ”Event c o n t a i n s one or more p u b l i c DNS

r e s o l v e r s as a t t r i b u t e w i th an IDS f l a g s e t ” ,
5 ” ma t c h i n g a t t r i b u t e s ” : [
6 ” ip−s r c ” ,
7 ” ip−ds t ”
8] ,
9 ” l i s t ” : [

10 ”8 . 8 . 8 . 8” ,
11 ”8 . 8 . 4 . 4” , . . .]
12 }

15 of 17

MISP warning lists

• The warning lists are integrated in MISP to display an
info/warning box at the event and attribute level.

• Enforceable via the API where all attributes that have a hit on a
warninglist will be excluded.

• This can be enabled at MISP instance level.

• Default warning lists can be enabled or disabled like known public
resolver, multicast IP addresses, hashes for empty values,
rfc1918, TLDs or known google domains.

• The warning lists can be expanded or added in JSON locally or via
pull requests.

• Warning lists can be also used for critical or core infrastructure
warning, personally identifiable information...

16 of 17

Q&A

• https://github.com/MISP/MISP

• https://github.com/MISP/misp-taxonomies

• https://github.com/MISP/PyTaxonomies

• https://github.com/MISP/misp-warninglists

• info@circl.lu (if you want to join one of the MISP community
operated by CIRCL)

• PGP key fingerprint: CA57 2205 C002 4E06 BA70 BE89 EAAD
CFFC 22BD 4CD5

17 of 17

https://github.com/MISP/MISP
https://github.com/MISP/misp-taxonomies
https://github.com/MISP/PyTaxonomies
https://github.com/MISP/misp-warninglists

Extending MISP with Python modules
MISP - Malware Information Sharing Platform & Threat Sharing

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Why we want to go more modular...

• Ways to extend MISP before modules
◦ APIs (PyMISP, MISP API)

• Works really well
• No integration with the UI

◦ Change the core code

• Have to change the core of MISP, diverge from upstream
• Needs a deep understanding of MISP internals
• Let’s not beat around the bush: Everyone hates PHP

2 of 32

Goals for the module system

• Have a way to extend MISP without altering the core

• Get started quickly without a need to study the internals

• Make the modules as light weight as possible
◦ Module developers should only have to worry about the data

transformation
◦ Modules should have a simple and clean skeleton

• In a friendlier language - Python

3 of 32

MISP modules - extending MISP with Python scripts

• Extending MISP with expansion
modules with zero customization in
MISP.

• A simple ReST API between the
modules and MISP allowing
auto-discovery of new modules with
their features.

• Benefit from existing Python
modules in Viper or any other tools.

• MISP modules functionnality
introduced in MISP 2.4.28.

• MISP import/export modules
introduced in MISP 2.4.50.

4 of 32

MISP modules - installation

• MISP modules can be run on the same system or on a remote
server.

• Python 3 is required to run MISP modules.
◦ sudo apt-get install python3-dev python3-pip libpq5
◦ cd /usr/local/src/
◦ sudo git clone https://github.com/MISP/misp-modules.git
◦ cd misp-modules
◦ sudo pip3 install -I -r REQUIREMENTS
◦ sudo pip3 install -I .
◦ sudo vi /etc/rc.local, add this line: ‘sudo -u www-data misp-modules

-s &‘

5 of 32

MISP modules - Simple REST API mechanism

• http://127.0.0.1:6666/modules - introspection interface to get all
modules available
◦ returns a JSON with a description of each module

• http://127.0.0.1:6666/query - interface to query a specific
module
◦ to send a JSON to query the module

• MISP autodiscovers the available modules and the MISP site
administrator can enable modules as they wish.

• If a configuration is required for a module, MISP adds
automatically the option in the server settings.

6 of 32

Finding available MISP modules

• curl -s http://127.0.0.1:6666/modules

1 {
2 "type": "expansion",

3 "name": "dns",

4 "meta": {
5 "module -type": [

6 "expansion",

7 "hover"

8],

9 "description": "Simple DNS expansion

service to resolve IP address from

MISP attributes",

10 "author": "Alexandre Dulaunoy",

11 "version": "0.1"

12 },
13 "mispattributes": {
14 "output": [

15 "ip-src",

16 "ip-dst"

17],

18 "input": [

19 "hostname",

20 "domain"

21]

22 }

7 of 32

Querying a module

• curl -s http://127.0.0.1:6666/query -H ”Content-Type:
application/json” –data @body.json -X POST

body.json

1 {"module": "dns", "hostname": "www.circl.lu"}

• and the response of the dns module:

1 {"results": [{"values": ["149.13.33.14"],

2 "types": ["ip-src", "ip-dst"]}]}

8 of 32

MISP modules - How it’s integrated in the UI?

9 of 32

MISP modules - configuration in the UI

10 of 32

MISP modules - main types of modules

• Expansion modules - enrich data that is in MISP
◦ Hover type - showing the expanded values directly on the attributes
◦ Expansion type - showing and adding the expanded values via a

proposal form

• Import modules - import new data into MISP

• Export modules - export existing data from MISP

11 of 32

Creating your Expansion module (Skeleton)

import j s o n
import dns . r e s o l v e r

m i s p e r r o r s = { ’ e r r o r ’ : ’ E r r o r ’ }
m i s p a t t r i b u t e s = { ’ i n p u t ’ : [] , ’ output ’ : [] }
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ ’ , ’ a u t h o r ’ : ’ ’ ,

’ d e s c r i p t i o n ’ : ’ ’ , ’ module−t y p e ’ : [] }

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
r = { ’ r e s u l t s ’ : [{ ’ t y p e s ’ : [] , ’ v a l u e s ’ : [] }] }
return r

def i n t r o s p e c t i o n () :
return m i s p a t t r i b u t e s

def v e r s i o n () :
return m o d u l e i n f o

12 of 32

Creating your Expansion module (metadata 1)

m i s p e r r o r s = { ’ e r r o r ’ : ’ E r r o r ’ }
m i s p a t t r i b u t e s = { ’ i n p u t ’ : [’ hostname ’ , ’ domain ’] , ’ output ’ : [’ ip−s r c ’ , ’ ip−d s t ’]}
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ ’ , ’ a u t h o r ’ : ’ ’ ,

’ d e s c r i p t i o n ’ : ’ ’ , ’ module−t y p e ’ : [] }

13 of 32

Creating your Expansion module (metadata 2)

m i s p e r r o r s = { ’ e r r o r ’ : ’ E r r o r ’ }
m i s p a t t r i b u t e s = { ’ i n p u t ’ : [’ hostname ’ , ’ domain ’] , ’ output ’ : [’ ip−s r c ’ , ’ ip−d s t ’]}
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ 0 . 1 ’ , ’ a u t h o r ’ : ’ A l e x a n d r e Dulaunoy ’ ,

’ d e s c r i p t i o n ’ : ’ S imple DNS e x p a n s i o n s e r v i c e to
r e s o l v e IP a d d r e s s from MISP a t t r i b u t e s ’ , ’ module−t y p e ’ : [’ e x p a n s i o n ’ , ’ h o v e r ’]}

14 of 32

Creating your Expansion module (handler 1)

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
MAGIC
MORE MAGIC
r = { ’ r e s u l t s ’ : [

{ ’ t y p e s ’ : o u t p u t t y p e s , ’ v a l u e s ’ : v a l u e s } ,
{ ’ t y p e s ’ : o u t p u t t y p e s 2 , ’ v a l u e s ’ : v a l u e s 2 }

]}
return r

15 of 32

Creating your Expansion module (handler 2)

i f r e q u e s t . g e t (’ hostname ’) :
t o q u e r y = r e q u e s t [’ hostname ’]

e l i f r e q u e s t . g e t (’ domain ’) :
t o q u e r y = r e q u e s t [’ domain ’]

e l s e :
return F a l s e

r = dns . r e s o l v e r . R e s o l v e r ()
r . t i m e o u t = 2
r . l i f e t i m e = 2
r . n a m e s e r v e r s = [’ 8 . 8 . 8 . 8 ’]
t r y :

answer = r . qu e r y (toquery , ’A ’)
except dns . r e s o l v e r .NXDOMAIN:

m i s p e r r o r s [’ e r r o r ’] = ”NXDOMAIN”
return m i s p e r r o r s

except dns . e x c e p t i o n . Timeout :
m i s p e r r o r s [’ e r r o r ’] = ” Timeout ”
return m i s p e r r o r s

except :
m i s p e r r o r s [’ e r r o r ’] = ”DNS r e s o l v i n g e r r o r ”
return m i s p e r r o r s

r = { ’ r e s u l t s ’ : [{ ’ t y p e s ’ : m i s p a t t r i b u t e s [’ output ’] , ’ v a l u e s ’ : [s t r (answer [0])] }] }
return r

16 of 32

Creating your module - finished DNS module

import j s o n
import dns . r e s o l v e r
m i s p e r r o r s = { ’ e r r o r ’ : ’ E r r o r ’ }
m i s p a t t r i b u t e s = { ’ i n p u t ’ : [’ hostname ’ , ’ domain ’] , ’ output ’ : [’ ip−s r c ’ , ’ ip−d s t ’]}
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ 0 . 1 ’ , ’ a u t h o r ’ : ’ A l e x a n d r e Dulaunoy ’ ,

’ d e s c r i p t i o n ’ : ’ S imple DNS e x p a n s i o n s e r v i c e to r e s o l v e IP a d d r e s s from MISP a t t r i b u t e s ’ , ’ module−t y p e ’ : [’ e x p a n s i o n ’ , ’ h o v e r ’]}
def h a n d l e r (q=F a l s e) :

i f q i s F a l s e :
return F a l s e

r e q u e s t = j s o n . l o a d s (q)
i f r e q u e s t . g e t (’ hostname ’) :

t o q u e r y = r e q u e s t [’ hostname ’]
e l i f r e q u e s t . g e t (’ domain ’) :

t o q u e r y = r e q u e s t [’ domain ’]
e l s e :

return F a l s e
r = dns . r e s o l v e r . R e s o l v e r ()
r . t i m e o u t = 2
r . l i f e t i m e = 2
r . n a m e s e r v e r s = [’ 8 . 8 . 8 . 8 ’]
t r y :

answer = r . qu e r y (toquery , ’A ’)
except dns . r e s o l v e r .NXDOMAIN:

m i s p e r r o r s [’ e r r o r ’] = ”NXDOMAIN”
return m i s p e r r o r s

except dns . e x c e p t i o n . Timeout :
m i s p e r r o r s [’ e r r o r ’] = ” Timeout ”
return m i s p e r r o r s

except :
m i s p e r r o r s [’ e r r o r ’] = ”DNS r e s o l v i n g e r r o r ”
return m i s p e r r o r s

r = { ’ r e s u l t s ’ : [{ ’ t y p e s ’ : m i s p a t t r i b u t e s [’ output ’] , ’ v a l u e s ’ : [s t r (answer [0])] }] }
return r

def i n t r o s p e c t i o n () :
return m i s p a t t r i b u t e s

def v e r s i o n () :
return m o d u l e i n f o

17 of 32

Testing your module

• Copy your module dns.py in modules/expansion/

• Restart the server misp-modules.py
[a d u l a u : ˜ / g i t / misp−modules / b i n] $ python3 misp−modules . py
2016−03−20 1 9 : 2 5 : 4 3 , 7 4 8 − misp−modules − INFO − MISP modules p a s s i v e t o t a l i m p o r t e d
2016−03−20 1 9 : 2 5 : 4 3 , 7 8 7 − misp−modules − INFO − MISP modules s o u r c e c a c h e i m p o r t e d
2016−03−20 1 9 : 2 5 : 4 3 , 7 8 9 − misp−modules − INFO − MISP modules cve i m p o r t e d
2016−03−20 1 9 : 2 5 : 4 3 , 7 9 0 − misp−modules − INFO − MISP modules dns i m p o r t e d
2016−03−20 1 9 : 2 5 : 4 3 , 7 9 7 − misp−modules − INFO − MISP modules s e r v e r s t a r t e d on TCP p o r t 6666

• Check if your module is present in the introspection

• curl -s http://127.0.0.1:6666/modules

• If yes, test it directly with MISP or via curl

18 of 32

Code samples (Configuration)

Con f i g u r a t i o n at the top
m o d u l e c o n f i g = [’ username ’ , ’ password ’]
Code b l o ck i n the hand l e r

i f r e q u e s t . g e t (’ c o n f i g ’) :
i f (r e q u e s t [’ c o n f i g ’] . g e t (’ username ’) i s None) or (r e q u e s t [’ c o n f i g ’] . g e t (’ password ’) i s None) :

m i s p e r r o r s [’ e r r o r ’] = ’ CIRCL P a s s i v e SSL a u t h e n t i c a t i o n i s m i s s i n g ’
return m i s p e r r o r s

−
x = p y p s s l . PyPSSL (b a s i c a u t h =(r e q u e s t [’ c o n f i g ’] [’ username ’] , r e q u e s t [’ c o n f i g ’] [’ password ’]))

19 of 32

Default expansion module set

• asn history
• CIRCL Passive DNS
• CIRCL Passive SSL
• Country code lookup
• CVE information expansion
• DNS resolver
• DomainTools
• eupi (checking url in phishing database)
• IntelMQ (experimental)
• ipasn
• PassiveTotal -

http://blog.passivetotal.org/misp-sharing-done-differently
• sourcecache
• Virustotal
• Whois20 of 32

Import modules

• Similar to expansion modules

• Input is a file upload or a text paste

• Output is a list of parsed attributes to be editend and verified by
the user

• System is still new but some modules already exist
◦ Cuckoo JSON import
◦ email import
◦ OCR module
◦ Simple STIX import module

• Many ideas for future modules (OpenIOC import, connector to
sandboxes, STIX 2.0, etc)

21 of 32

Creating your Import module (Skeleton)

import j s o n

m i s p e r r o r s = { ’ e r r o r ’ : ’ E r r o r ’ }
u s e r C o n f i g = {

’ number1 ’ : {
’ t y p e ’ : ’ I n t e g e r ’ ,
’ r e g e x ’ : ’ /ˆ[0−4] $/ i ’ ,
’ e r r o r M e s s a g e ’ : ’ Expected a number i n ra ng e [0−4] ’ ,
’ message ’ : ’ Column number used f o r v a l u e ’

}
} ;

i n p u t S o u r c e = [’ f i l e ’ , ’ p a s t e ’]
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ ’ , ’ a u t h o r ’ : ’ ’ ,

’ d e s c r i p t i o n ’ : ’ ’ , ’ module−t y p e ’ : [’ i m p o r t ’]}
m o d u l e c o n f i g =[]

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
r e q u e s t [” data ”] = base64 . b64decode (r e q u e s t [” data ”])
r = { ’ r e s u l t s ’ : [{ ’ c a t e g o r i e s ’ : [] , ’ t y p e s ’ : [] , ’ v a l u e s ’ : [] }] }
return r

def i n t r o s p e c t i o n () :
return { ’ u s e r C o n f i g ’ : u s e r C o n f i g , ’ i n p u t S o u r c e ’ : i n p u t S o u r c e , ’ modu leConf ig ’ : modu leConf ig }

def v e r s i o n () :
return m o d u l e i n f o

22 of 32

Creating your import module (userConfig and
inputSource)

u s e r C o n f i g = {
’ number1 ’ : {

’ t y p e ’ : ’ I n t e g e r ’ ,
’ r e g e x ’ : ’ /ˆ[0−4] $/ i ’ ,
’ e r r o r M e s s a g e ’ : ’ Expected a number i n ra ng e [0−4] ’ ,
’ message ’ : ’ Column number used f o r v a l u e ’

}
} ;
i n p u t S o u r c e = [’ f i l e ’ , ’ p a s t e ’]

23 of 32

Creating your import module (Handler)

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
r e q u e s t [” data ”] = base64 . b64decode (r e q u e s t [” data ”])
r = { ’ r e s u l t s ’ : [{ ’ c a t e g o r i e s ’ : [] , ’ t y p e s ’ : [] , ’ v a l u e s ’ : [] }] }
return r

24 of 32

Creating your import module (Introspection)

def i n t r o s p e c t i o n () :
modulesetup = {}
t r y :

u s e r C o n f i g
modulesetup [’ u s e r C o n f i g ’] = u s e r C o n f i g

except NameError :
pass

t r y :
modu leConf ig
modulesetup [’ modu leConf ig ’] = moduleConf ig

except NameError :
pass

t r y :
i n p u t S o u r c e
modulesetup [’ i n p u t S o u r c e ’] = i n p u t S o u r c e

except NameError :
pass

return modulesetup

25 of 32

Export modules

• Input is currently only a single event

• Dynamic settings

• Later on to be expanded to event collections / attribute collections

• Output is a file in the export format served back to the user

• Export modules was recently introduced but a CEF export module
already available

• Lots of ideas for upcoming modules and including interaction with
misp-darwin

26 of 32

Creating your Export module (Skeleton)

import j s o n
i n p u t S o u r c e = [’ e v e n t ’]
o u t p u t F i l e E x t e n s i o n = ’ t x t ’
r e s p o n s e T y p e = ’ a p p l i c a t i o n / t x t ’
m o d u l e i n f o = { ’ v e r s i o n ’ : ’ 0 . 1 ’ , ’ a u t h o r ’ : ’ Andras I k l o d y ’ ,

’ d e s c r i p t i o n ’ : ’ S k e l e t o n e x p o r t module ’ ,
’ module−t y p e ’ : [’ e x p o r t ’]}

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
i n s e r t your magic he r e !
output = my magic (r e q u e s t [” data ”])
r = {” data ” : base64 . b64encode (output . encode (’ u t f−8 ’)) . decode (’ u t f−8 ’)}
return r

def i n t r o s p e c t i o n () :
return { ’ u s e r C o n f i g ’ : u s e r C o n f i g , ’ i n p u t S o u r c e ’ : i n p u t S o u r c e , ’ modu leConf ig ’ : moduleConf ig , ’ o u t p u t F i l e E x t e n s i o n ’ : o u t p u t F i l e E x t e n s i o n }

def v e r s i o n () :
return m o d u l e i n f o

27 of 32

Creating your export module (settings)

i n p u t S o u r c e = [’ e v e n t ’]
o u t p u t F i l e E x t e n s i o n = ’ t x t ’
r e s p o n s e T y p e = ’ a p p l i c a t i o n / t x t ’

28 of 32

Creating your export module (handler)

def h a n d l e r (q=F a l s e) :
i f q i s F a l s e :

return F a l s e
r e q u e s t = j s o n . l o a d s (q)
i n s e r t your magic he r e !
output = my magic (r e q u e s t [” data ”])
r = {” data ” : base64 . b64encode (output . encode (’ u t f−8 ’)) . decode (’ u t f−8 ’)}
return r

29 of 32

Creating your export module (introspection)
def i n t r o s p e c t i o n () :

modu lesetup = {}
t r y :

r e s p o n s e T y p e
modulesetup [’ r e s p o n s e T y p e ’] = r e s p o n s e T y p e

except NameError :
pass

t r y :
u s e r C o n f i g
modulesetup [’ u s e r C o n f i g ’] = u s e r C o n f i g

except NameError :
pass

t r y :
modu leConf ig
modulesetup [’ modu leConf ig ’] = moduleConf ig

except NameError :
pass

t r y :
o u t p u t F i l e E x t e n s i o n
modulesetup [’ o u t p u t F i l e E x t e n s i o n ’] = o u t p u t F i l e E x t e n s i o n

except NameError :
pass

t r y :
i n p u t S o u r c e
modulesetup [’ i n p u t S o u r c e ’] = i n p u t S o u r c e

except NameError :
pass

return modulesetup

30 of 32

Upcoming additions to the module system - General

• Expose the modules to the APIs

• Move the modules to background processes with a messaging
system

• Difficulty is dealing with uncertain results on import (without the
user having final say)

31 of 32

Q&A

• https://github.com/MISP/misp-modules

• https://github.com/MISP/

• We welcome new modules and pull requests.

• MISP modules can be designed as standalone application.

32 of 32

https://github.com/MISP/misp-modules
https://github.com/MISP/

MISP Training: Galaxies

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

MISP Galaxies

• MISP started out as a platform for technical indicator sharing

• The need for a way to describe threat actors, tools and other
commonalities became more and more pressing

• Taxonomies quickly became essential for classifying events

• The weakness of the tagging aproach is that it’s not very
descriptive

• We needed a way to attach more complex structures to data

• Also, with the different naming conventions for the same ”thing”
attribution was a mess

• This is where the Galaxy concept came in

2 / 17

Solution

• Pre-crafted galaxy ”clusters” via GitHub project

• Attach them to an event and attribute(s)

• The main design principle was that these higher level informations
are meant for human consumption

• This means flexibility - key value pairs, describe them dynamically

• Technical indicators remain strongly typed and validated, galaxies
are loose key value lists

3 / 17

The galaxy object stack

• Galaxy: The type of data described (Threat actor, Tool, ...)

• Cluster: An individual instance of the galaxy (Sofacy, Turla, ...)

• Element: Key value pairs describing the cluster (Country: RU,
Synonym: APT28, Fancy Bear)

• Reference: Referenced galaxy cluster (Such as a threat actor
using a specific tool)

4 / 17

(some) Existing galaxies

• Exploit-Kit: An enumeration of known exploitation kits used by
adversaries

• Microsoft activity group: Adversary groups as defined by
Microsoft

• Preventive measure: Potential preventive measures against
threats

• Ransomware: List of known ransomwares

• TDS: Traffic Direction System used by adversaries

• Threat-Actor: Known or estimated adversary groups

• Tool: Tools used by adversaries (from Malware to common tools)

• MITRE ATT&CK: Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CKTM)

5 / 17

What a cluster looks like

6 / 17

Attaching clusters to events

• Internally simply using a taxonomy-like tag to attach them to
events

• Example: misp-galaxy:threat-actor=”Sofacy”

• Synchronisation works out of the box with older instances too.
They will simply see the tags until they upgrade.

• Currently, as mentioned we rely on the community’s contribution
of galaxies

7 / 17

Attaching clusters

• Use a searchable synonym database to find what you’re after

8 / 17

Creating your own galaxy

• Creating galaxy clusters has to be straightforward to get the
community to contribute

• Building on the prior success of the taxonomies and warninglists

• Simple JSON format in similar fashion

• Just drop the JSON in the proper directory and let MISP ingest it

• We always look forward to contributions to our galaxies repository

9 / 17

Galaxy JSON

• If you want to create a completely new galaxy instead of enriching
an existing one

1 {
2 ”name” : ”Threat Actor ” ,
3 ” type ” : ” th r e a t−a c t o r ” ,
4 ” d e s c r i p t i o n ” : ”Threat a c t o r s a r e c h a r a c t e r i s t i c s o f

ma l i c i o u s a c t o r s (o r a d v e r s a r i e s) r e p r e s e n t i n g a cybe r
a t t a c k t h r e a t i n c l u d i n g presumed i n t e n t and
h i s t o r i c a l l y ob s e r v ed behav i ou r . ” ,

5 ” v e r s i o n ” : 1 ,
6 ” uu id ” : ”698774c7−8022−42c4−917 f−8d6e4 f 06ada3”
7 }

10 / 17

Cluster JSON

• Clusters contain the meat of the data

• Skeleton structure as follows
1 {
2 ” v a l u e s ” : [
3 {
4 ”meta” : {} ,
5 ” d e s c r i p t i o n ” : ”” ,
6 ” v a l u e ” : ”” ,
7 ” r e l a t e d c l u s t e r s ” : [{}] ,
8 }
9]

10 }

11 / 17

Cluster JSON value example
1 {
2 ”meta” : {
3 ” synonyms” : [
4 ”APT 28” , ”APT28” , ”Pawn Storm” , ”Fancy Bear ” ,
5 ” Sedn i t ” , ”TsarTeam” , ”TG−4127” , ”Group−4127” ,
6 ”STRONTIUM” , ”Grey−Cloud”
7] ,
8 ” coun t r y ” : ”RU” ,
9 ” r e f s ” : [

10 ” h t t p s : // en . w i k i p e d i a . org / w i k i / Sofacy Group ”
11]
12 } ,
13 ” d e s c r i p t i o n ” : ”The Sofacy Group (a l s o known as APT28 ,
14 Pawn Storm , Fancy Bear and Sedn i t) i s a cybe r
15 e sp i onage group b e l i e v e d to have t i e s to the
16 Rus s i an government . L i k e l y o p e r a t i n g s i n c e 2007 ,
17 the group i s known to t a r g e t government , m i l i t a r y ,
18 and s e c u r i t y o r g a n i z a t i o n s . I t has been
19 c h a r a c t e r i z e d as an advanced p e r s i s t e n t t h r e a t . ” ,
20 ” v a l u e ” : ” So facy ”
21 } ,

12 / 17

meta best practices

• Reusing existing values such as properties, complexity,
effectiveness, country, possible issues, colour, motive,
impact, refs, synonyms, derivated from, status, date,
encryption, extensions, ransomnotes, cfr-suspected-victims,
cfr-suspected-state-sponsor, cfr-type-of-incident,
cfr-target-category.

• Or adding your own meta fields.

13 / 17

meta best practices - a sample
1 {
2 ” d e s c r i p t i o n ” : ” Pu t t e r Panda were the s u b j e c t o f an

e x t e n s i v e r e p o r t by CrowdSt r i ke , which s t a t e d : ’The
CrowdSt r i ke I n t e l l i g e n c e team has been t r a c k i n g t h i s
p a r t i c u l a r u n i t s i n c e 2012 , under the codename

PUTTER PANDA, and has documented a c t i v i t y d a t i n g
back to 2007 . The r e p o r t i d e n t i f i e s Chen Ping , aka
cpyy , and the p r imary l o c a t i o n o f Un i t 61486 . ’ ” ,

3 ”meta” : {
4 ” c f r−su spec ted−s t a t e−spon so r ” : ”China ” ,
5 ” c f r−su spec ted−v i c t im s ” : [
6 ”U. S . s a t e l l i t e and ae r o spac e s e c t o r ”
7] ,
8 ” c f r−t a r g e t−c a t e go r y ” : [
9 ” P r i v a t e s e c t o r ” ,

10 ”Government”
11] ,
12 ” c f r−type−of− i n c i d e n t ” : ” Esp ionage ” ,
13 ” coun t r y ” : ”CN” ,
14 ” r e f s ” : [
15 ” h t tp : // cdn0 . vox−cdn . com/ a s s e t s /4589853/ c r owd s t r i k e−

i n t e l l i g e n c e −r e po r t−pu t t e r−panda . o r i g i n a l . pd f ” ,
16 ” h t t p s : //www. c f r . o rg / i n t e r a c t i v e / cyber−o p e r a t i o n s /

pu t t e r−panda”
17] ,
18 ” synonyms” : [
19 ”PLA Uni t 61486” ,
20 ”APT 2” ,
21 ”Group 36” ,
22 ”APT−2” ,
23 ”MSUpdater” ,
24 ”4HCrew” ,
25 ”SULPHUR” ,
26 ”TG−6952”
27]
28 }}

14 / 17

Expressing relation between clusters

• Cluster can be related to one or more clusters using default
relationships from MISP objects and a list of tags to classify the
relation.

1 ” r e l a t e d ” : [
2 {
3 ” dest−uu id ” : ”5 ce 5392a−3a6c−4e07−9 d f 3−9b6a9159ac45” ,
4 ” t ag s ” : [
5 ” e s t ima t i v e−l anguage : l i k e l i h o o d −p r o b a b i l i t y =\”

l i k e l y \””
6] ,
7 ” type ” : ” s i m i l a r ”
8 }
9] ,

10 ” uu id ” : ”0 ca45163−e223−4167−b1 af−f 088ed14a93d” ,
11 ” v a l u e ” : ” Pu t t e r Panda”

15 / 17

PyMISPGalaxies

from p ym i s p g a l a x i e s import C l u s t e r s
c = C l u s t e r s ()
l i s t (g . keys ())
[’ t h r e a t−a c t o r ’ , ’ ransomware ’ , ’ e x p l o i t−k i t ’ , ’ t d s ’ , ’ t o o l ’ , ’ r a t ’ , ’ m i t re−at tack−pa t t e r n ’ ,
’ mit re−t o o l ’ , ’ m i c r o s o f t−a c t i v i t y−group ’ , ’ mi t re−cour se−of−a c t i o n ’ , ’ mi t re−malware ’ ,
’ mit re−i n t r u s i o n−s e t ’ , ’ p r e v e n t i v e−measure ’]
p r i n t (c . ge t (” r a t ”))
misp−ga l a x y : r a t=”Brat ”
misp−ga l a x y : r a t=”Lok i RAT”
misp−ga l a x y : r a t=” j o i n .me”
misp−ga l a x y : r a t=”Se t ro ”
misp−ga l a x y : r a t=”d r a t ”
misp−ga l a x y : r a t=”Plasma RAT”
misp−ga l a x y : r a t=”NanoCore”
misp−ga l a x y : r a t=”DarkTrack”
misp−ga l a x y : r a t=”Theef ”
misp−ga l a x y : r a t=”Greame”
misp−ga l a x y : r a t=”Nuc l ea r RAT”
misp−ga l a x y : r a t=”DameWare Mini Remote Con t r o l ”
misp−ga l a x y : r a t=”ProRat”
misp−ga l a x y : r a t=”death ”
misp−ga l a x y : r a t=”Dark DDoSeR”
. . . .
p r i n t (c . ge t (” r a t ”) . d e s c r i p t i o n)
remote a dm i n i s t r a t i o n t o o l o r remote a c c e s s t o o l (RAT) , a l s o c a l l e d somet imes remote
ac c e s s t r o j a n , i s a p i e c e o f s o f twa r e or programming tha t a l l ow s a remote ” op e r a t o r ”
to c o n t r o l a system as i f they have p h y s i c a l a c c e s s to tha t system .

16 / 17

Q&A

• info@circl.lu (if you want to join the CIRCL MISP sharing
community)

• OpenPGP fingerprint: 3B12 DCC2 82FA 2931 2F5B 709A 09E2
CD49 44E6 CBCD

• https://github.com/MISP/ -
http://www.misp-project.org/

• We welcome any contributions to the project, be it pull requests,
ideas, github issues,...

17 / 17

https://github.com/MISP/
http://www.misp-project.org/

Information Sharing and Taxonomies
Practical Classification of Threat Indicators using MISP

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Prague
20180917

http://www.misp-project.org/
https://twitter.com/mispproject

Objects - or How We Learned to Stop Worrying and
Love the Templates

• Attributes are a simple but powerful tool to describe data
• Lacking the capability to create containers around attributes

describing a common concept
• The goal was to develop something semi-standardised, with the

option to dynamically build templates
• We have considered a list of different solutions such as simple

boolean operators, but found that the current implementation was
superior.

• The result is a simple template that uses the basic attriubte types
as building blocks along with some meta data

• The template does not have to be known in order to use the
constructed objects

• What we maintain now is a set of common objects, but similarly to
our other JSON formats, users can extend it with their own ideas.2 of 12

MISP Object Templates

• Using a similar JSON format as the taxonomies, galaxies,
warninglists.

• You can find the default set of object templates in the git
repository1.

• Some of the object templates capture objects from other standards
or mimic the output of tools

• We tried to capture the most common use-cases coming from our
own use-case as well as those of various partners that got involved

• Improvements or pull requests for new object templates are of
course always welcome

1https://www.github.com/MISP/misp-objects/
3 of 12

https://www.github.com/MISP/misp-objects/

Existing Object examples

• AIL-leak - AIL object, an example for an object catering to
the output of another tool

• Android permission - An object used to further contextualise
another object

• Bank account

• File Generic object to describe a file

• Passive DNS

• Regex

• Sandbox report

• Vulnerability Enabling new use-cases such as pre-sharing of
vulnerability information

• x509

• Yara Verbatim sharing of rule sets along with meta-data
4 of 12

Object Template skeleton

1 {
2 ” requ i r edOneOf ” : [] ,
3 ” r e q u i r e d ” : [] ,
4 ” a t t r i b u t e s ” : {} ,
5 ” v e r s i o n ” : 1 ,
6 ” d e s c r i p t i o n ” : ”My d e s c r i p t i o n ” ,
7 ”meta−c a t e go r y ” : ”Chosen meta c a t e go r y ” ,
8 ” uu id ” : ”Object t emp la t e uu id ” ,
9 ”name” : ”Object t emp la t e name”

10 }

5 of 12

Adding elements to an object template

1 ” regexp−t ype ” : {
2 ” d e s c r i p t i o n ” : ”Type o f the r e g u l a r e x p r e s s i o n s yn tax . ” ,
3 ” d i s a b l e c o r r e l a t i o n ” : t r u e ,
4 ” u i−p r i o r i t y ” : 0 ,
5 ”misp−a t t r i b u t e ” : ” t e x t ” ,
6 ” v a l u e s l i s t ” : [
7 ”PCRE” ,
8 ”PCRE2” ,
9 ”POSIX BRE” ,

10 ”POSIX ERE”
11]
12 } ,

6 of 12

Attribute keys

• Primary key: Object relation

• description: A description of the attribute in relation to the object

• disable correlation: You can disable correlations for attributes in
the resulting object

• ui-priority: Not implemented yet, but the idea is to have a ”quick
view” of objects only showing certain prio levels

• misp-attribute: The misp attribute type used as as the building
block

• values list: an optional list of values from which the user must
choose instead of entering a value manually

• sane defaults: an optional list of values from which the user may
choose instead of entering a value

• multiple: Allow the user to add more than one of this attribute
7 of 12

Enforcement of certain keys

• The template also defines which of the added attributes are
mandatory

• Requirements are pointed to via their object relations names

• We differentiate between two types of rule sets:
◦ Required: Everything in this list has to be set in order for the object

to validate
◦ Required One Of: Any of the attributes in this list will satisfy the

requirements

8 of 12

What will the the template actually do?

• Templates create a form that can be used to populate an event

• When using templates, MISP will enforce everything according to
the template rules

• However, these are only optional, users can avoid using the
templates when creating events via the API

• The reason for this is that you do not need to have the template in
order to create an object

• The limitation of this system: You cannot modify objects that
were created with unknown templates

9 of 12

Templates as rendered in the UI

10 of 12

Templates as rendered in the UI

11 of 12

Q&A

• https://github.com/MISP/MISP

• https://github.com/MISP/misp-objects

• info@circl.lu (if you want to join one of the MISP community
operated by CIRCL)

• PGP key fingerprint: CA57 2205 C002 4E06 BA70 BE89 EAAD
CFFC 22BD 4CD5

12 of 12

https://github.com/MISP/MISP
https://github.com/MISP/misp-objects

