### Honeypots observations and their usefulness



CIRCL Computer Incident Response Center Luxembourg Gerard Wagener - TLP:WHITE

CIRCL

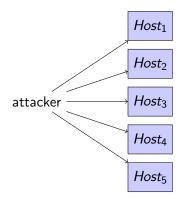
March 15, 2017



- The Computer Incident Response Center Luxembourg (CIRCL) is a government-driven initiative designed to provide a systematic response facility to computer security threats and incidents
- CIRCL is the CERT for the private sector, communes and non-governmental entities in Luxembourg

### Definition (Honeypots)

"A honeypot is security resource whose value lies in being probed, attacked, or compromised."  $^{1}\,$ 

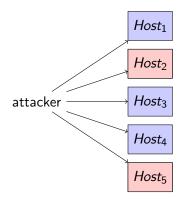

### Evolution

- Keeping attacker was experimented by Stoll in the late 80s<sup>2</sup>
- Honeypot concept pushed in the year 2002

<sup>1</sup>Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002, page 23. <sup>2</sup>Clifford Stoll. Stalking the wily hacker. Commun. ACM, 31(5):484–497, 1988.

### Honeypots - introduction

Opportunistic automated attacks




Monitor unused IPs  $\rightarrow$  Honeypots

- Attacker scans arbitrary hosts
- $2^{32}$  possibilities for IPv4
- Abuse of vulnerable hosts

### Honeypots - introduction

Opportunistic automated attacks



Monitor unused IPs  $\rightarrow$  Honeypots

- Attacker scans arbitrary hosts
- $2^{32}$  possibilities for IPv4
- Abuse of vulnerable hosts

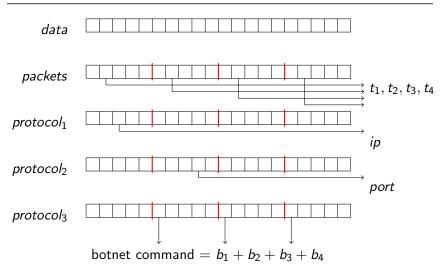
### Honeypots - introduction

Motivation to monitor unused IP addresses

- Do not monitor legitimate traffic
  - Reduce false positives
  - Avoid privacy issues
- Detect opportunistic attacks
- Detect misconfigured machines
- Detect victims: DDOS, compromised servers, ...

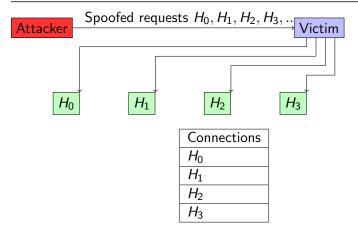
# Honeypot observations capabilities

Interactions


#### Information gain

- The more protocols you speak, the more information you get
- The more information you get, the more you get involved

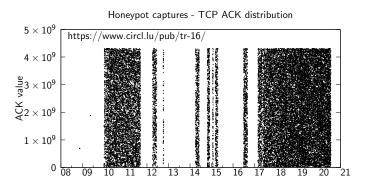
#### Honeypot interaction levels


- Low interaction honeypots
- Mid interaction honeypots
- High interaction honeypots

### Honeypot observations capabilities



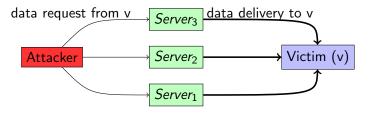
## Observing SYN floods attacks in backscatter traffic


Attack description



Fill up state connection state table of the victim

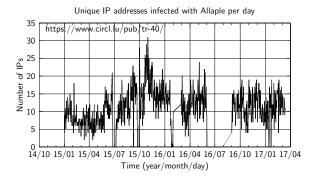
### Observing SYN floods attacks in backscatter traffic


Plotting TCP acknowledgement numbers



Time - Hour

### Definition

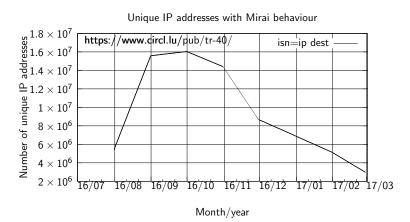

- y request of x bytes triggers responses of (x+Δ) bytes × selected vulnerable server (y)
- Abuse of vulnerable servers



### Discovering the attacking infrastructure

Historical example: Allaple worm from 2006 - 2017

#### Attackers constantly scan for vulnerable hosts




Probes for more than 10 years

### Discovering the attacking infrastructure

Popular example: Mirai

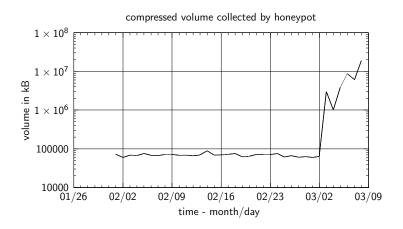
#### Variant ISN=destination IP



### Observing misconfigured systems

Human and Internet addressing is a good mix for errors

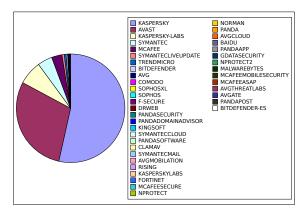
- Just look at "internal"<sup>3</sup> addresses that should not go on Internet
- Further reading: https://www.circl.lu/assets/files/ circl-blackhole-honeynetworkshop2014.pdf


Hit wrong key Omission of number  $192.x.y.z \rightarrow 12.x.y.z$ Doubling of keys

 $192.x.z.y \rightarrow 193.x.y.z$  $10.a.b.c \rightarrow 100.a.b.c$ 172.x.y.z 1**5**2.x.y.z



### Observing misconfigured systems


Generic metrics



14 of 17

## Observing misconfigured systems

Badly configured DNS resolvers



Antivirus software trying to fetch their updates from honeypots

15 of 17

# Improving threat intelligence data

MISP sightings

### Definition

- Threat intelligence data lookup in honeypot data
- $\bullet\,$  Feedback to threat intelligence platform via sighting  $^4$
- Link threat intelligence data with honeypot observations
  - $\circ~$  Identify opportunistic attacks
  - $\circ~$  Identify misconfigured systems
  - $\circ~$  Refresh time-to-live of attributes seen in honeypots
  - $\circ~$  Determine the <code>freshness</code> of information

<sup>4</sup>http:

//www.misp.software/2017/02/16/Sighting-The-Next-Level.html

### Conclusions

- Usefulness of honeypots
  - Detect opportunistic attacks
  - Detect trends: Netis backdoor, Heartbleed, Mirai,...
  - Detect misconfigured machines
  - $\circ~$  Discover victims: DDOS, compromised servers,  $\ldots$
  - Measuring attacker's capabilities
- Ongoing best effort research activities at CIRCL
- Getting involved  $^{5}$