Another Perspective to IP-Darkspace Analysis

Cynthia Wagner, Marc Stiefer, Restena-CSIRT Alexandre Dulaunoy, Gérard Wagener, CIRCL- *TLP:WHITE*

info@circl.lu.csirt@restena.lu

28 January 2013 TF-CSIRT/FIRST Meeting

Motivation

- IP-darkspace is
 - Routable non-used address space of an ISP (Internet Service Provider),
 - o arriving traffic is unidirectional
 - o and unsolicited.
- Is there any traffic in those darkspaces?
- If yes, what and why does it arrive there?
 - And on purpose or by mischance?
- What's the security impact?
- What are the security recommendations?

Why is there traffic?

Origins

- Attackers (and researchers) scan networks to find vulnerable systems (e.g. SSH brute-force).
- Backscatter traffic (e.g. from spoofed DoS).
- Self-replicating code using network as a vector (e.g. conficker, residual worms).
- Badly configured devices especially embedded devices (e.g. printers, server, routers).
 - $\circ \to \text{Our IP-darkspace}$ is especially suited for spelling errors from the RFC1918 (private networks) address space.

Why is there traffic

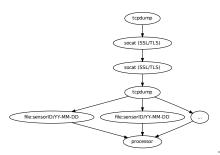
Typing/Spelling errors with RFC1918 networks

• While typing an IP address, different error categories might emerge:

Hit wrong key	19 2 .x.z.y $→$	19 3 .x.y.z
Omission of number	1 9 2.x.y.z $ ightarrow$	12.x.y.z
Doubling of keys	10.a.b.c $ ightarrow$	10 0 .a.b.c
	172.x.y.z	1 5 2.x.y.z

Research activities related to spelling errors

Spelling errors apply to text but also network configuration


- 34% omissions of 1 character
 - \circ Example: Network \rightarrow Netork
- 23% of all errors happen on 3rd position of a word
 - \circ Example: Text \rightarrow Test)
- 94% spellings errors are single errors in word
 - And do not reappear

References

- Pollock J. J. and Zamora A., Collection and characterization of spelling errors in scientific and scholarly text. J. Amer. Soc. Inf. Sci. 34, 1, 51 58, 1983.
- Kukich K., Techniques for automatically correcting words in text. ACM Comput. Surv. 24, 4, 377-439, 1992.

IP-Darkspace: Data Collection

Implementation

- Minimal sensor collecting IP-Darkspace networks (close to RFC1918 address space).
- Raw pcap are captured with the full payload.
- Netbeacon^a developed to ensure consistent packet capture.

awww.github.com/adulau/netbeacon/

Dataset collected

- from 2012-03-12 until 2012-11-04 (still active).
- 90 gigabytes of raw pcap were collected.
- Constant stream of packets (150kbit/s) from two /22 network blocks.
 - o no day/night profile.
- Some peaks at 800kbit/s (e.g. often TCP RST from back scatter traffic).

General observations

- A large part of traffic is coming from badly configured devices (e.g. RFC1918 spelling errors).
 - o Printers, embedded devices, routers or even server.
 - Trying to do name resolution on non-existing DNS servers, NTP or sending syslog messages.
- Even if the black-hole is passive, payload of stateless UDP packets or even TCP (due to asymmetric routing on misspelled network) datagrams are present.
- Internal network scanning and reconnaissance tool (e.g. internal network enumeration).

Observation per AS

Traffic seen in the darknet

N	Frequency	ASN
1	4596319	4134
2	1382960	4837
3	367515	3462
4	312984	4766
5	211468	4812
6	166110	9394
7	156303	9121
8	153585	4808
9	135811	9318
10	116105	4788

- Occurrences of activities matching the proportion of hosts in a country.
- Chinese great-wall is not filtering leaked packets.

Network reconnaissance: a few machine names

And many more ...

ASTTF.NET HELP.163.COM ASUEGYI.INFO HP_CLIENT1

ASUS1025C MACBOOKAIR-CAD7
DEFAULT MACBOOK-B5BA66
DELICIOUS.COM MACBOOKPRO-5357

DELICIOUS.COM MACBOOKPRO-535
DELI MAIL.AFT20.COM

DELL1400 S3.QHIMG.COM

DELL335873 SERVERWEB

DELL7777 SERVEUR

DELL-PC SERVICE.QQ.COM

DELLPOP3 SMTP.163.COM

Network reconnaissance: NetBios machine types

```
23
      Browser Server
4
      Client?
      Client? M <ACTIVE>
21
      Domain Controller
      Domain Controller M < ACTIVE>
11
      Master Browser
      NameType=0x00 Workstation
      NameType=0x20 Server
105
      Server
26
      Unknown
      Unknown < GROUP > B < ACTIVE >
5
      Unknown < GROUP > M < ACTIVE >
1322 Workstation
      Workstation M < ACTIVE>
```

Network reconnaissance (and potential misuse): DNS

```
3684 _msdcs.<companyname>.local
1232666 time.euro.apple.com
104 time.euro.apple.com.<mylocaldomain>
122 ocsp.tcs.terena.org
50000+ ocsp.<variousCA>
```

- DNS queries to an incorrect nameserver could lead to major misuse.
- A single typo in a list of 3 nameservers is usually unnoticed.

Printer syslog to the world

or how to tell to the world your printer status

```
2012-03-12 18:00:42

SYSLOG lpr.error printer: offline
or intervention needed
2012-03-23 21:51:24.985290

SYSLOG lpr.error printer: paper out
...
2012-08-06 19:14:57.248337

SYSLOG lpr.error printer: paper jam
```

- Printers are just an example out of many syslog messages from various devices.
- Information leaked could be used by attackers to gain more information or improve targeted attacks.

13 of 15

How to configure your router (without security)

Enable command logging and send the logs to a random syslog server

We will let you guess the sensitive part afterwards...

```
Aug 13 10:11:51 M6000-G5 command-log:[10:11:51 08-13-2012 VtyNo: vty1 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: show subscriber interface gei-0/2/1/12.60 Aug 13 10:46:05 M6000-G5 command-log:[10:46:05 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: conf t ]
Aug 13 10:46:10 M6000-G5 command-log:[10:46:10 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMD Line: aaa-authentication-template 1100 ]
...
```

14 of 15

Conclusions

- Security recommendations
 - Default routing/NAT to Internet in operational network is evil.
 - · Use fully qualified domain names.
 - Double check syslog exports via UDP (e.g. information leakage is easy).
 - Verify any default configuration with SNMP (e.g. enable by default on some embedded devices).
- Offensive usage? What does it happen if a malicious Internet operator is responding to misspelled RFC1918 addresses? (e.g. DNS/NTP requests, software update or proxy request).